Effect of Sc microalloying on fabrication, microstructure and mechanical properties of SiCp/Al–Cu–Mg-Sc composites via powder metallurgy

[1]  Yunpeng Cai,et al.  Achieving simultaneous enhancement of strength and ductility in Al matrix composites by employing the synergetic strengthening effect of micro- and nano-SiCps , 2022, Composites Part B: Engineering.

[2]  Xiaoming Wang,et al.  Microstructures and mechanical properties of an Al-Cu-Mg-Sc alloy reinforced with in-situ TiB2 particulates , 2020, Materials Science and Engineering: A.

[3]  Weiqi Wang,et al.  Enhancing high-temperature strength of (B4C+Al2O3)/Al designed for neutron absorbing materials by constructing lamellar structure , 2020 .

[4]  N. Hansen,et al.  Strengthening mechanisms and Hall-Petch stress of ultrafine grained Al-0.3%Cu , 2018, Acta Materialia.

[5]  S. Ji,et al.  Strengthening die-cast Al-Mg and Al-Mg-Mn alloys with Fe as a beneficial element , 2018, Materials Science and Engineering: A.

[6]  Di Zhang,et al.  Particle size effect on the interfacial properties of SiC particle-reinforced Al-Cu-Mg composites , 2018 .

[7]  Biao Chen,et al.  The influence of Sc solute partitioning on the microalloying effect and mechanical properties of Al-Cu alloys with minor Sc addition , 2016 .

[8]  Biao Chen,et al.  Length-scale dependent microalloying effects on precipitation behaviors and mechanical properties of Al–Cu alloys with minor Sc addition , 2015 .

[9]  Z. Zheng,et al.  Microstructure evolution of the 1469 Al–Cu–Li–Sc alloy during homogenization , 2014 .

[10]  Longtao Jiang,et al.  A nanostructural design to produce high ductility of high volume fraction SiCp/Al composites with enhanced strength , 2014 .

[11]  A. Deschamps,et al.  Precipitation kinetics in a severely plastically deformed 7075 aluminium alloy , 2014 .

[12]  Di Zhang,et al.  Strong and ductile particulate reinforced ultrafine-grained metallic composites fabricated by flake powder metallurgy , 2013 .

[13]  J. Lai,et al.  Precipitation strengthening of Al–B4C metal matrix composites alloyed with Sc and Zr , 2013 .

[14]  Biao Chen,et al.  Effect of interfacial solute segregation on ductile fracture of Al―Cu―Sc alloys , 2013 .

[15]  J. Lai,et al.  The thermal stability of mechanical properties of Al–B4C composites alloyed with Sc and Zr at elevated temperatures , 2012 .

[16]  A. Rao,et al.  Influence of scandium on the microstructure and mechanical properties of A319 alloy , 2010 .

[17]  J. Robson,et al.  The formation of nanograin structures and accelerated room-temperature theta precipitation in a severely deformed Al–4 wt.% Cu alloy , 2010 .

[18]  D. Seidman,et al.  Erbium and ytterbium solubilities and diffusivities in aluminum as determined by nanoscale characterization of precipitates , 2009 .

[19]  Alexis Deschamps,et al.  Complex precipitation pathways in multicomponent alloys , 2006, Nature materials.

[20]  D. Seidman,et al.  Criteria for developing castable, creep-resistant aluminum-based alloys – A review , 2006, International Journal of Materials Research.

[21]  C. Nan,et al.  Experiment and multiscale modeling of the coupled influence of constituents and precipitates on the ductile fracture of heat-treatable aluminum alloys , 2005 .

[22]  J. Røyset,et al.  Scandium in aluminium alloys , 2005 .

[23]  Ted Belytschko,et al.  Cracking particles: a simplified meshfree method for arbitrary evolving cracks , 2004 .

[24]  H. Prask,et al.  Pure Al matrix composites produced by vacuum hot pressing: tensile properties and strengthening mechanisms , 2004 .

[25]  N. Hansen,et al.  Hall–Petch relation and boundary strengthening , 2004 .

[26]  Xiangdong Ding,et al.  The influences of multiscale-sized second-phase particles on ductility of aged aluminum alloys , 2004 .

[27]  David C. Dunand,et al.  Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys , 2002 .

[28]  N. Chawla,et al.  Mechanical Behavior of Particle Reinforced Metal Matrix Composites , 2001 .

[29]  B. Li,et al.  Dislocation interaction with semicoherent precipitates (Ω phase) in deformed Al–Cu–Mg–Ag alloy , 1998 .

[30]  S. Fujikawa,et al.  Kinetics of precipitation in AlSc alloys and low temperature solid solubility of scandium in aluminium studied by electrical resistivity measurements , 1993 .

[31]  J. Papazian Effects of SiC whiskers and particles on precipitation in aluminum matrix composites , 1988 .

[32]  F. Czerwinski Cerium in aluminum alloys , 2019, Journal of Materials Science.

[33]  Timon Rabczuk,et al.  A computational library for multiscale modeling of material failure , 2013, Computational Mechanics.

[34]  Hydro,et al.  SCANDIUM IN ALUMINIUM ALLOYS OVERVIEW : PHYSICAL METALLURGY , PROPERTIES AND APPLICATIONS , 2007 .

[35]  D. L. Zhang,et al.  Processing of advanced materials using high-energy mechanical milling , 2004 .

[36]  Simon P. Ringer,et al.  Microstructural Evolution and Age Hardening in Aluminium Alloys: Atom Probe Field-Ion Microscopy and Transmission Electron Microscopy Studies , 2000 .

[37]  S. Schmauder,et al.  Micromechanism of fracture in Al/SiC composites , 1995 .

[38]  D. Lloyd Particle reinforced aluminium and magnesium matrix composites , 1994 .

[39]  Farghalli A. Mohamed,et al.  Particulate reinforced metal matrix composites — a review , 1991, Journal of Materials Science.

[40]  V. Protasov,et al.  THE CRYSTAL STRUCTURE OF TERNARY PHASES IN THE Sc-Cu-Al SYSTEM , 1966 .

[41]  Jun Sun,et al.  Solute clusters-promoted strength-ductility synergy in Al-Sc alloy , 2022 .