A Weak Calculus with Explicit Operators for Pattern Matching and Substitution

In this paper we propose aWeak Lambda Calculus called ?Pw having explicit operators for Pattern Matching and Substitution. This formalism is able to specify functions defined by cases via pattern matching constructors as done by most modern functional programming languages such as OCAML.We show the main property enjoyed by ?Pw, namely subject reduction, confluence and strong normalization.

[1]  René David,et al.  A lambda-calculus with explicit weakening and explicit substitution , 2001, Math. Struct. Comput. Sci..

[2]  C. J. Bloo,et al.  Preservation of strong normalisation in named lambda calculi with explicit substitution and garbage collection , 1995 .

[3]  Delia Kesner,et al.  Confluence Properties of Extensional and Non-Extensional lambda-Calculi with Explicit Substitutions (Extended Abstract) , 1996, RTA.

[4]  Val Tannen,et al.  A Typed Pattern Calculus , 1996, Inf. Comput..

[5]  Pierre Lescanne,et al.  From λσ to λν: a journey through calculi of explicit substitutions , 1994, POPL '94.

[6]  Eike Ritter,et al.  Normalization for Typed Lambda Calculi with Explicit Substitution , 1993, CSL.

[7]  Delia Kesner,et al.  Pattern matching as cut elimination , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[8]  Claude Kirchner,et al.  Matching Power , 2001, RTA.

[9]  Jean-Jacques Lévy,et al.  Confluence properties of weak and strong calculi of explicit substitutions , 1996, JACM.

[10]  Pierre Lescanne,et al.  λν, a calculus of explicit substitutions which preserves strong normalisation , 1996, Journal of Functional Programming.

[11]  Jan Willem Klop,et al.  Combinatory reduction systems , 1980 .

[12]  Martín Abadi,et al.  Explicit substitutions , 1989, POPL '90.

[13]  Delia Kesner,et al.  λCalculi with Explicit Substitutions Preserving Strong Normalization , 1999, Applicable Algebra in Engineering, Communication and Computing.