Age and provenance of the lithospheric mantle beneath the Chidliak kimberlite province, southern Baffin Island: Implications for the evolution of the North Atlantic Craton

[1]  M. Kopylova,et al.  Constraining carbonation freezing and petrography of the carbonated cratonic mantle with natural samples , 2021 .

[2]  W. Griffin,et al.  Building cratonic keels in Precambrian plate tectonics , 2020, Nature.

[3]  M. Kopylova,et al.  Eclogites of the North Atlantic Craton: insights from the Chidliak eclogite xenoliths (S. Baffin Island, Canada) , 2020, Contributions to Mineralogy and Petrology.

[4]  D. Pearson,et al.  The complex life cycle of oceanic lithosphere: A study of Yarlung-Zangbo ophiolitic peridotites, Tibet , 2020 .

[5]  Do Hee Keum,et al.  Kimberlite genesis from a common carbonate-rich primary melt modified by lithospheric mantle assimilation , 2020, Science Advances.

[6]  Peter A. Cawood,et al.  North Atlantic Craton architecture revealed by kimberlite-hosted crustal zircons , 2020, Earth and Planetary Science Letters.

[7]  D. Pearson,et al.  Kimberlites as Geochemical Probes of Earth’s Mantle , 2019 .

[8]  D. Pearson,et al.  The Metasomatized Mantle beneath the North Atlantic Craton: Insights from Peridotite Xenoliths of the Chidliak Kimberlite Province (NE Canada) , 2019, Journal of Petrology.

[9]  D. Pearson,et al.  Thinning and destruction of the lithospheric mantle root beneath the North China Craton: A review , 2019, Earth-Science Reviews.

[10]  R. Holdsworth,et al.  The Iceland Microcontinent and a continental Greenland-Iceland-Faroe Ridge , 2019, Earth-Science Reviews.

[11]  R. Walker,et al.  Destruction of the North China Craton in the Mesozoic , 2019, Annual Review of Earth and Planetary Sciences.

[12]  A. Gerdes,et al.  Effects of multi-stage rifting and metasomatism on HSE-187Os/188Os systematics of the cratonic mantle beneath SW Greenland , 2019, Contributions to Mineralogy and Petrology.

[13]  A. Luguet,et al.  Dating mantle peridotites using Re-Os isotopes: The complex message from whole rocks, base metal sulfides, and platinum group minerals , 2019, American Mineralogist.

[14]  B. Kjarsgaard,et al.  Diamondiferous Paleoproterozoic mantle roots beneath Arctic Canada: A study of mantle xenoliths from Parry Peninsula and Central Victoria Island , 2018, Geochimica et Cosmochimica Acta.

[15]  J. Imber,et al.  Evidence for Basement Reactivation during the Opening of the Labrador Sea from the Makkovik Province, Labrador, Canada: Insights from Field Data and Numerical Models , 2018, Geosciences.

[16]  D. Snyder,et al.  Mantle composition, age and geotherm beneath the Darby kimberlite field, west central Rae Craton , 2018, Mineralogy and Petrology.

[17]  A. Camacho,et al.  U-Pb and Lu-Hf isotopes of the Archean orthogneiss complex on eastern Hall Peninsula, southern Baffin Island, Nunavut: Identification of exotic Paleo- to Mesoarchean crust beneath eastern Hall Peninsula , 2018 .

[18]  A. Gerdes,et al.  Volatile-rich Metasomatism in the Cratonic Mantle beneath SW Greenland: Link to Kimberlites and Mid-lithospheric Discontinuities , 2017 .

[19]  Q. Shu,et al.  The birth, growth and ageing of the Kaapvaal subcratonic mantle , 2017, Mineralogy and Petrology.

[20]  A. Steenfelt,et al.  Sources and mobility of carbonate melts beneath cratons, with implications for deep carbon cycling, metasomatism and rift initiation , 2017 .

[21]  R. Fonseca,et al.  Mesoarchean melting and Neoarchean to Paleoproterozoic metasomatism during the formation of the cratonic mantle keel beneath West Greenland , 2017 .

[22]  D. Snyder,et al.  Construction and destruction of some North American cratons , 2017 .

[23]  N. Arndt,et al.  Metasomatism of the Lithospheric Mantle Immediately Precedes Kimberlite Eruption: New Evidence from Olivine Composition and Microstructures , 2015 .

[24]  S. König,et al.  Significance of the whole rock Re–Os ages in cryptically and modally metasomatised cratonic peridotites: Constraints from HSE–Se–Te systematics , 2015 .

[25]  M. Miller,et al.  Lithospheric architecture beneath Hudson Bay , 2015 .

[26]  R. Walker,et al.  Big insights from tiny peridotites: Evidence for persistence of Precambrian lithosphere beneath the eastern North China Craton , 2015 .

[27]  D. Pearson,et al.  The thinning of subcontinental lithosphere: The roles of plume impact and metasomatic weakening , 2015 .

[28]  R. Creaser,et al.  U–Pb geochronology and Sr/Nd isotope compositions of groundmass perovskite from the newly discovered Jurassic Chidliak kimberlite field, Baffin Island, Canada , 2015 .

[29]  J. Russell,et al.  Kimberlite emplacement temperatures from conodont geothermometry , 2015 .

[30]  Xuan‐Ce Wang,et al.  Determination of Platinum‐Group Elements and Re‐Os Isotopes using ID‐ICP‐MS and N‐TIMS from a Single Digestion after Two‐Stage Column Separation , 2014 .

[31]  J. Brenan,et al.  Partitioning of platinum-group elements and Au between sulfide liquid and basalt and the origins of mantle-crust fractionation of the chalcophile elements , 2014 .

[32]  D. Pearson,et al.  Rapid, precise and accurate Os isotope ratio measurements of nanogram to sub-nanogram amounts using multiple Faraday collectors and amplifiers equipped with 1012 Ω resistors by N-TIMS , 2014 .

[33]  R. Berman,et al.  The tectonometamorphic evolution of Southampton Island, Nunavut: Insight from petrologic modeling and in situ SHRIMP geochronology of multiple episodes of monazite growth , 2013 .

[34]  D. Snyder,et al.  Seismic anisotropy and mantle structure of the Rae craton, central Canada, from joint interpretation of SKS splitting and receiver functions , 2013 .

[35]  T. Waight,et al.  The provenance of sub-cratonic mantle beneath the Limpopo Mobile Belt (South Africa) , 2013 .

[36]  A. Steenfelt,et al.  Asthenospheric source of Neoproterozoic and Mesozoic kimberlites from the North Atlantic craton, West Greenland: New high-precision U–Pb and Sr–Nd isotope data on perovskite , 2012 .

[37]  K. Jochum,et al.  New constraints on the genesis and long-term stability of Os-rich alloys in the Earth's mantle , 2012 .

[38]  A. Steenfelt,et al.  Craton formation in Late Archean subduction zones revealed by first Greenland eclogites , 2011 .

[39]  L. Reisberg,et al.  Volatile-rich metasomatism in montferrier xenoliths (Southern France) : implications for the abundances of chalcophile and highly siderophile elements in the subcontinental mantle , 2011 .

[40]  R. Walker,et al.  Mapping lithospheric boundaries using Os isotopes of mantle xenoliths: An example from the North China Craton , 2011 .

[41]  K. Muehlenbachs,et al.  A fresh isotopic look at Greenland kimberlites: Cratonic mantle lithosphere imprint on deep source signal , 2011 .

[42]  H. Becker,et al.  Rhodium, gold and other highly siderophile elements in orogenic peridotites and peridotite xenoliths , 2011 .

[43]  H. Rollinson Coupled evolution of Archean continental crust and subcontinental lithospheric mantle , 2010 .

[44]  A. Luguet,et al.  Formation of the North Atlantic Craton: Timing and mechanisms constrained from Re–Os isotope and PGE data of peridotite xenoliths from S.W. Greenland , 2010 .

[45]  R. Walker,et al.  Highly siderophile elements and Sr–Nd isotopes in refertilized mantle peridotites — A case study from the Totalp ultramafic body, Swiss Alps , 2010 .

[46]  D. Eaton,et al.  Precambrian crustal evolution: Seismic constraints from the Canadian Shield , 2010 .

[47]  R. Walker,et al.  Processes controlling highly siderophile element fractionations in xenolithic peridotites and their influence on Os isotopes , 2010 .

[48]  G. D. Jackson,et al.  Cumberland batholith, Trans-Hudson Orogen, Canada: Petrogenesis and implications for Paleoproterozoic crustal and orogenic processes , 2010 .

[49]  J. Lorand,et al.  Platinum-group element micronuggets and refertilization process in Lherz orogenic peridotite (northeastern Pyrenees, France) , 2010 .

[50]  R. Walker,et al.  Interpreting ages from Re–Os isotopes in peridotites , 2009 .

[51]  K. Sand,et al.  The lithospheric mantle below southern West Greenland: A geothermobarometric approach to diamond potential and mantle stratigraphy , 2009 .

[52]  E. Jelínek,et al.  Effects of melt percolation on highly siderophile elements and Os isotopes in subcontinental lithospheric mantle: A study of the upper mantle profile beneath Central Europe , 2009 .

[53]  N. Coltice,et al.  Origin of Archean subcontinental lithospheric mantle: Some petrological constraints , 2009 .

[54]  C. Ottley,et al.  Origin of cratonic lithospheric mantle roots: A geochemical study of peridotites from the North Atlantic Craton, West Greenland , 2008 .

[55]  D. Pearson,et al.  Formation of Archaean continental lithosphere and its diamonds: the root of the problem , 2008, Journal of the Geological Society.

[56]  J. Lorand,et al.  Platinum-Group Elements: A New Set of Key Tracers for the Earth's Interior , 2008 .

[57]  B. Kjarsgaard,et al.  Between carbonatite and lamproite—Diamondiferous Torngat ultramafic lamprophyres formed by carbonate-fluxed melting of cratonic MARID-type metasomes , 2008 .

[58]  A. Luguet,et al.  184Os/188Os and 186Os/188Os measurements by Negative Thermal Ionisation Mass Spectrometry (N-TIMS): Effects of interfering element and mass fractionation corrections on data accuracy and precision , 2008 .

[59]  A. Sobolev,et al.  Platinum-group element abundances and Os isotope composition of mantle peridotites from the Mamonia complex, Cyprus , 2008 .

[60]  R. Carlson,et al.  Residual platinum-group minerals from highly depleted harzburgites of the Lherz massif (France) and their role in HSE fractionation of the mantle , 2007 .

[61]  P. Kelemen,et al.  Consistent olivine Mg# in cratonic mantle reflects Archean mantle melting to the exhaustion of orthopyroxene , 2007 .

[62]  B. Kjarsgaard,et al.  Craton reactivation on the Labrador Sea margins: 40Ar/39Ar age and Sr–Nd–Hf–Pb isotope constraints from alkaline and carbonatite intrusives , 2007 .

[63]  W. Griffin,et al.  Cratonic lithospheric mantle : is anything subducted? , 2007 .

[64]  N. Wodicka,et al.  Polymetamorphic Evolution of the Trans-Hudson Orogen, Baffin Island, Canada: Integration of Petrological, Structural and Geochronological Data , 2007 .

[65]  V. Laurenz,et al.  Fractionation of the noble metals by physical processes , 2006 .

[66]  R. Walker,et al.  Highly siderophile element composition of the Earth’s primitive upper mantle: Constraints from new data on peridotite massifs and xenoliths , 2006 .

[67]  B. Kjarsgaard,et al.  Genesis of Ultramafic Lamprophyres and Carbonatites at Aillik Bay, Labrador: a Consequence of Incipient Lithospheric Thinning beneath the North Atlantic Craton , 2006 .

[68]  P. Kelemen,et al.  Ultra-depleted, shallow cratonic mantle beneath West Greenland: dunitic xenoliths from Ubekendt Ejland , 2006 .

[69]  L. Reisberg,et al.  Re-Os and S systematics of spinel peridotite xenoliths from east central China: Evidence for contrasting effects of melt percolation [rapid communication] , 2005 .

[70]  A. Nutman,et al.  Inventory and assessment of Palaeoarchaean gneiss terrains and detrital zircons in southern West Greenland , 2004 .

[71]  Y. Niu Bulk-rock Major and Trace Element Compositions of Abyssal Peridotites: Implications for Mantle Melting, Melt Extraction and Post-melting Processes Beneath Mid-Ocean Ridges , 2004 .

[72]  C. Herzberg Geodynamic Information in Peridotite Petrology , 2004 .

[73]  Conny Bockrath,et al.  Fractionation of the Platinum-Group Elements During Mantle Melting , 2004, Science.

[74]  G. Dreibus,et al.  Re-Os isotope systematics and platinum group element fractionation during mantle melt extraction: a study of massif and xenolith peridotite suites , 2004 .

[75]  M. Bizzarro,et al.  Major element composition of the lithospheric mantle under the North Atlantic craton: Evidence from peridotite xenoliths of the Sarfartoq area, southwestern Greenland , 2003 .

[76]  L. Reisberg,et al.  Platinum-group elements and melt percolation processes in Sidamo spinel peridotite xenoliths, Ethiopia, East African Rift , 2003 .

[77]  A. Hofmann,et al.  Melt percolation monitored by Os isotopes and HSE abundances: a case study from the mantle section of the Troodos Ophiolite , 2002 .

[78]  W. Griffin,et al.  New insights into the Re–Os systematics of sub-continental lithospheric mantle from in situ analysis of sulphides , 2002 .

[79]  M. St-Onge,et al.  Review of crustal architecture and evolution in the Ungava Peninsula — Baffin Island area: connection to the Lithoprobe ECSOOT transect , 2002 .

[80]  J. Lorand,et al.  Platinum-group element abundances in the upper mantle: New constraints from in situ and whole-rock analyses of Massif Central xenoliths (France) , 2001 .

[81]  R. Walker,et al.  Osmium isotopic compositions of mantle xenoliths: A global perspective , 2001 .

[82]  J. Brenan,et al.  HIGH-TEMPERATURE STABILITY OF LAURITE AND Ru–Os–Ir ALLOY AND THEIR ROLE IN PGE FRACTIONATION IN MAFIC MAGMAS , 2001 .

[83]  W. Griffin,et al.  Non-chondritic distribution of the highly siderophile elements in mantle sulphides , 2000, Nature.

[84]  D. Pearson Solvent extraction/anion exchange separation and determination of PGEs (Os, Ir, Pt, Pd, Ru) and Re-Os isotopes in geological samples by isotope dilution ICP-MS , 2000 .

[85]  R. Walker,et al.  THE Re-Os ISOTOPE SYSTEM IN COSMOCHEMISTRY AND HIGH-TEMPERATURE GEOCHEMISTRY , 1998 .

[86]  V. Bennett,et al.  The persistence of off-cratonic lithospheric mantle: Os isotopic systematics of variably metasomatised southeast Australian xenoliths , 1997 .

[87]  P. H. Nixon,et al.  Stabilisation of Archaean lithospheric mantle: a Re-Os isotope study of peridotite xenoliths from th , 1995 .

[88]  W. McDonough,et al.  The composition of the Earth , 1995 .

[89]  P. Kelemen,et al.  Focused melt flow and localized deformation in the upper mantle: Juxtaposition of replacive dunite and ductile shear zones in the Josephine peridotite, SW Oregon , 1995 .

[90]  R. Carlson,et al.  Os, Sr, Nd, and Pb isotope systematics of southern African peridotite xenoliths: Implications for the chemical evolution of subcontinental mantle , 1989 .

[91]  A. J. Naldrett,et al.  The origin of the fractionation of platinum-group elements in terrestrial magmas , 1985 .

[92]  R. Keays,et al.  Abundance and distribution of gold, palladium and iridium in some spinel and garnet lherzolites: implications for the nature and origin of precious metal-rich intergranular components in the upper mantle , 1981 .

[93]  J. Lorand,et al.  Chalcophile and Siderophile Elements in Mantle Rocks: Trace Elements Controlled By Trace Minerals , 2016 .

[94]  L. Reisberg,et al.  Highly Siderophile Element and 187Os Signatures in Non-cratonic Basalt-hosted Peridotite Xenoliths: Unravelling the Origin and Evolution of the Post-Archean Lithospheric Mantle , 2016 .

[95]  B. Kjarsgaard,et al.  Age and evolution of the deep continental root beneath the central Rae craton, northern Canada , 2016 .

[96]  D. Pearson,et al.  Distribution and Processing of Highly Siderophile Elements in Cratonic Mantle Lithosphere , 2016 .

[97]  D. Pearson,et al.  3.6 – The Formation and Evolution of Cratonic Mantle Lithosphere – Evidence from Mantle Xenoliths , 2014 .

[98]  N. Rayner New ( 2013 – 2014 ) UPb geochronological results from northern Hall Peninsula , southern Baffin Island , Nunavut , 2014 .

[99]  H. Grütter,et al.  Following kimberlite indicator minerals to source in the Chidliak Kimberlite Province, Nunavut , 2013 .

[100]  E. Jelínek,et al.  Highly siderophile element geochemistry of peridotites and pyroxenites from Horní Bory, Bohemian Massif: Implications for HSE behaviour in subduction-related upper mantle , 2013 .

[101]  T. Pulvertaft,et al.  Development of the continental margins of the Labrador Sea: a review , 2001, Geological Society, London, Special Publications.

[102]  D. J. Scott U–Pb geochronology of the eastern Hall Peninsula, southern Baffin Island, Canada: a northern link between the Archean of West Greenland and the Paleoproterozoic Torngat Orogen of northern Labrador , 1999 .

[103]  P. Kelemen,et al.  Depleted spinel harzburgite xenoliths in Tertiary dykes from East Greenland: Restites from high degree melting , 1998 .