Zigzag nanoribbons in external electric fields

We consider the Schrodinger operator on nanoribbons (tight-binding models) in an external electric potential V on the plane. The corresponding electric field is perpendicular to the axis of the nanoribbon. If V = 0, then the spectrum of the Schrodinger operator consists of two non-flat bands and one flat band (an eigenvalue with infinite multiplicity) between them. If we switch on a weak electric potential V → 0, then there are two cases: (1) this eigenvalue splits into the small spectral band. We determine the asymptotics of the spectral bands for small fields. (2) the unperturbed eigenvalue remains the flat band. We describe all potentials when the unperturbed eigenvalue remains the flat band and when one splits into the small band of the continuous spectrum.

[1]  M. Herranz,et al.  Carbon Nanotubes and Related Structures , 2010 .

[2]  E. Korotyaev Effective Masses for Zigzag Nanotubes in Magnetic Fields , 2007, math-ph/0703017.

[3]  Jinlong Yang,et al.  Will zigzag graphene nanoribbon turn to half metal under electric field , 2007, 0708.1213.

[4]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[5]  P. Kuchment,et al.  On the Spectra of Carbon Nano-Structures , 2006, math-ph/0612021.

[6]  S. Louie,et al.  Energy gaps in graphene nanoribbons. , 2006, Physical review letters.

[7]  E. Korotyaev,et al.  Zigzag periodic nanotube in magnetic field , 2006, math/0604007.

[8]  E. Korotyaev Gap-length mapping for periodic Jacobi matrices , 2006 .

[9]  Konstantin Pankrashkin Spectra of Schrödinger Operators on Equilateral Quantum Graphs , 2005, math-ph/0512090.

[10]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[11]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[12]  A. Kutsenko,et al.  Inverse Problem for the Discrete 1D Schrödinger Operator with Small Periodic Potentials , 2005, math/0507297.

[13]  K. Novoselov,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[15]  D. Novikov Electron properties of carbon nanotubes in a periodic potential , 2004, cond-mat/0407498.

[16]  H. Hiura,et al.  Tailoring graphite layers by scanning tunneling microscopy , 2004 .

[17]  Spectral Estimates for Periodic Jacobi Matrices , 2003 .

[18]  M. Dresselhaus,et al.  Physical properties of carbon nanotubes , 1998 .

[19]  K. Kusakabe,et al.  Peculiar Localized State at Zigzag Graphite Edge , 1996 .

[20]  Spectral asymptotics of periodic discrete Schrödinger Operators. I. , 1995 .

[21]  J. Avron,et al.  Adiabatic quantum transport in multiply connected systems , 1988 .

[22]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .