Influence of the PVdF binder on the stability of LiCoO2 electrodes

[1]  Foster Dee Snell,et al.  Encyclopedia of Industrial Chemical Analysis , 1975 .

[2]  M. Inaba,et al.  Raman study of layered rock‐salt LiCoO2 and its electrochemical lithium deintercalation , 1997 .

[3]  D. Aurbach,et al.  SIMULTANEOUS MEASUREMENTS AND MODELING OF THE ELECTROCHEMICAL IMPEDANCE AND THE CYCLIC VOLTAMMETRIC CHARACTERISTICS OF GRAPHITE ELECTRODES DOPED WITH LITHIUM , 1997 .

[4]  Ralph E. White,et al.  Capacity Fade Mechanisms and Side Reactions in Lithium‐Ion Batteries , 1998 .

[5]  J. Besenhard,et al.  Handbook of Battery Materials , 1998 .

[6]  Young-Il Jang,et al.  TEM Study of Electrochemical Cycling‐Induced Damage and Disorder in LiCoO2 Cathodes for Rechargeable Lithium Batteries , 1999 .

[7]  P. Novák,et al.  SNIFTIRS investigation of the oxidative decomposition of organic-carbonate-based electrolytes for lithium-ion cells , 2000 .

[8]  B. N. Popov,et al.  Studies on Capacity Fade of Lithium-Ion Batteries , 2000 .

[9]  Takashi Itoh,et al.  Spectroelectrochemical studies on highly polarized LiCoO2 electrode in organic solutions , 2000 .

[10]  C. Julien,et al.  Fabrication of LiCoO2 thin-film cathodes for rechargeable lithium microbatteries , 2001 .

[11]  Doron Aurbach,et al.  On the capacity fading of LiCoO2 intercalation electrodes:: the effect of cycling, storage, temperature, and surface film forming additives , 2002 .

[12]  C. Julien Local structure and electrochemistry of lithium cobalt oxides and their doped compounds , 2003 .

[13]  Kristina Edström,et al.  The cathode-electrolyte interface in the Li-ion battery , 2004 .