Generalized Rayleigh-Schrödinger perturbation theory in matrix form
暂无分享,去创建一个
[1] D. Griffiths,et al. Introduction to Quantum Mechanics , 1960 .
[2] Tosio Kato. Perturbation theory for linear operators , 1966 .
[3] D. Tuan. General Expression for the Interchange Theorem of Double Perturbation Theory , 1967 .
[4] M. R. Spiegel. Mathematical handbook of formulas and tables , 1968 .
[5] F. L. Pilar,et al. Elementary Quantum Chemistry , 1968 .
[6] J. Hirschfelder. Formal Rayleigh–Schrödinger perturbation theory for both degenerate and non‐degenerate energy states , 1969 .
[7] Franz Rellich,et al. Perturbation Theory of Eigenvalue Problems , 1969 .
[8] R. Carbó. The perturbation theory for non-degenerate states and the extended Hückel method , 1970 .
[9] H. Silverstone,et al. EXPLICIT FORMULAS IN DEGENERATE RAYLEIGH--SCHROEDINGER PERTURBATION THEORY FOR THE ENERGY AND WAVE FUNCTION, BASED ON A FORMULA OF LAGRANGE. , 1971 .
[10] H. Silverstone. Explicit Solution for the Wavefunction and Energy in Degenerate Rayleigh–Schrödinger Perturbation Theory , 1971 .
[11] D. Tuan. Interchange Theorems for Triple Perturbation Theory , 1971 .
[12] R. Carbó. Generalized Rayleigh–Schrödinger perturbation theory , 1972 .
[13] E. Carbó,et al. Double-perturbation theory and generalized secular equations , 1973 .
[14] J. Hirschfelder,et al. Degenerate RS perturbation theory , 1974 .
[15] A. Szabo,et al. Modern quantum chemistry , 1982 .
[16] A. Szabó,et al. Modern quantum chemistry : introduction to advanced electronic structure theory , 1982 .
[17] David M. Hirst,et al. A Computational Approach to Chemistry , 1990 .
[18] G. Arteca,et al. Large Order Perturbation Theory and Summation Methods in Quantum Mechanics , 1990 .
[19] E. Besalú,et al. Many Center AO Integral Evaluation Using Cartesian Exponential Type Orbitals (CETO'S) , 1992 .
[20] W. Kutzelnigg. Stationary perturbation theory , 1992 .
[21] Emili Besalú,et al. Nested summation symbols and perturbation theory , 1993 .