Generalized Rayleigh-Schrödinger perturbation theory in matrix form

Thenested summation symbols (NSS) formalism is used as a starting point to formulate a completely general Rayleigh-Schrödinger perturbation theory (RSPT) scheme. In order to make the theoretical framework practical from a computational point of view, the matrix form for the theory is given in every case. As a result, an algorithmic iterative recipe to compute eigenvalue and eigenvector corrections up to any order is described. Degenerate systems are also treated. At the same time the described procedure allows the computation of eigenvalue and eigenvector derivatives with respect to a set of parameters.

[1]  D. Griffiths,et al.  Introduction to Quantum Mechanics , 1960 .

[2]  Tosio Kato Perturbation theory for linear operators , 1966 .

[3]  D. Tuan General Expression for the Interchange Theorem of Double Perturbation Theory , 1967 .

[4]  M. R. Spiegel Mathematical handbook of formulas and tables , 1968 .

[5]  F. L. Pilar,et al.  Elementary Quantum Chemistry , 1968 .

[6]  J. Hirschfelder Formal Rayleigh–Schrödinger perturbation theory for both degenerate and non‐degenerate energy states , 1969 .

[7]  Franz Rellich,et al.  Perturbation Theory of Eigenvalue Problems , 1969 .

[8]  R. Carbó The perturbation theory for non-degenerate states and the extended Hückel method , 1970 .

[9]  H. Silverstone,et al.  EXPLICIT FORMULAS IN DEGENERATE RAYLEIGH--SCHROEDINGER PERTURBATION THEORY FOR THE ENERGY AND WAVE FUNCTION, BASED ON A FORMULA OF LAGRANGE. , 1971 .

[10]  H. Silverstone Explicit Solution for the Wavefunction and Energy in Degenerate Rayleigh–Schrödinger Perturbation Theory , 1971 .

[11]  D. Tuan Interchange Theorems for Triple Perturbation Theory , 1971 .

[12]  R. Carbó Generalized Rayleigh–Schrödinger perturbation theory , 1972 .

[13]  E. Carbó,et al.  Double-perturbation theory and generalized secular equations , 1973 .

[14]  J. Hirschfelder,et al.  Degenerate RS perturbation theory , 1974 .

[15]  A. Szabo,et al.  Modern quantum chemistry , 1982 .

[16]  A. Szabó,et al.  Modern quantum chemistry : introduction to advanced electronic structure theory , 1982 .

[17]  David M. Hirst,et al.  A Computational Approach to Chemistry , 1990 .

[18]  G. Arteca,et al.  Large Order Perturbation Theory and Summation Methods in Quantum Mechanics , 1990 .

[19]  E. Besalú,et al.  Many Center AO Integral Evaluation Using Cartesian Exponential Type Orbitals (CETO'S) , 1992 .

[20]  W. Kutzelnigg Stationary perturbation theory , 1992 .

[21]  Emili Besalú,et al.  Nested summation symbols and perturbation theory , 1993 .