Conservative global gyrokinetic toroidal full-f five-dimensional Vlasov simulation

Abstract A new conservative global gyrokinetic toroidal full-f five-dimensional Vlasov simulation (GT5D) is developed using a novel non-dissipative conservative finite difference scheme. The scheme guarantees numerical stability by satisfying relevant first principles in the modern gyrokinetic theory, and enables robust and accurate simulations of tokamak micro-turbulence. GT5D is verified through comparisons of zonal flow damping tests, linear analyses of ion temperature gradient driven (ITG) modes, and nonlinear ITG turbulence simulations against a global gyrokinetic toroidal δf particle code. In the comparison, global solutions of the ITG turbulence are identified quantitatively by using two gyrokinetic codes based on particle and mesh approaches.

[1]  Parker,et al.  Gyrokinetic simulation of ion temperature gradient driven turbulence in 3D toroidal geometry. , 1993, Physical review letters.

[2]  N. Nakajima,et al.  A new f method for neoclassical transport studies , 1999 .

[3]  Hideo Sugama,et al.  Kinetic simulation of a quasisteady state in collisionless ion temperature gradient driven turbulence , 2002 .

[4]  Shinji Tokuda,et al.  Computation of MHD equilibrium of Tokamak Plasma , 1991 .

[5]  R. E. Waltz,et al.  An Eulerian gyrokinetic-Maxwell solver , 2003 .

[6]  Laurent Villard,et al.  A global collisionless PIC code in magnetic coordinates , 2007, Comput. Phys. Commun..

[7]  Yasuhiro Idomura,et al.  Kinetic simulations of turbulent fusion plasmas , 2006 .

[8]  Stephan Brunner,et al.  Collisional delta-f scheme with evolving background for transport time scale simulations , 1999 .

[9]  W. Lee,et al.  Gyrokinetic particle simulation of ion temperature gradient drift instabilities , 1988 .

[10]  Laurent Villard,et al.  Finite element approach to global gyrokinetic Particle-In-Cell simulations using magnetic coordinates , 1998 .

[11]  W. Lee,et al.  Gyrokinetic Particle Simulation Model , 1987 .

[12]  Hideo Sugama,et al.  Abstract Submitted for the DPP05 Meeting of The American Physical Society Collisionless Damping of Zonal Flows in Helical Systems , 2012 .

[13]  P. Moin,et al.  Fully Conservative Higher Order Finite Difference Schemes for Incompressible Flow , 1998 .

[14]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[15]  R. Hatzky,et al.  Energy conservation in a nonlinear gyrokinetic particle-in-cell code for ion-temperature-gradient-driven modes in θ-pinch geometry , 2002 .

[16]  T. Fujita,et al.  Chapter 2: Plasma confinement and transport , 2007 .

[17]  John M. Dawson,et al.  Fluctuation-induced heat transport results from a large global 3D toroidal particle simulation model , 1996 .

[18]  Patrick H. Diamond,et al.  Effects of Collisional Zonal Flow Damping on Turbulent Transport , 1999 .

[19]  M. S. Chance,et al.  Electromagnetic kinetic toroidal eigenmodes for general magnetohydrodynamic equilibria , 1982 .

[20]  Yasuhiro Idomura,et al.  Linear comparison of gyrokinetic codes with trapped electrons , 2007, Comput. Phys. Commun..

[21]  X. Garbet,et al.  Computing ITG turbulence with a full-f semi-Lagrangian code , 2008 .

[22]  Laurent Villard,et al.  First principles based simulations of instabilities and turbulence , 2004 .

[23]  Laurent Villard,et al.  Global gyrokinetic simulation of ion-temperature-gradient-drivien instabilities using particles, Invited paper , 1999 .

[24]  T. S. Hahm,et al.  Turbulence spreading and transport scaling in global gyrokinetic particle simulations , 2004 .

[25]  O. Vasilyev,et al.  Fully conservative finite difference scheme in cylindrical coordinates for incompressible flow simulations , 2004 .

[26]  Vincent Chan,et al.  Advances and Challenges in Computational Plasma Science , 2005 .

[27]  S. Parker,et al.  A fully nonlinear characteristic method for gyrokinetic simulation , 1993 .

[28]  Jeff M. Candy,et al.  The local limit of global gyrokinetic simulations , 2004 .

[29]  Jeff M. Candy,et al.  Gyrokinetic turbulence simulation of profile shear stabilization and broken gyroBohm scaling , 2002 .

[30]  Charlson C. Kim,et al.  Comparisons and physics basis of tokamak transport models and turbulence simulations , 2000 .

[31]  Virginie Grandgirard,et al.  Defining an equilibrium state in global full-f gyrokinetic models , 2008 .

[32]  Laurent Villard,et al.  On the definition of a kinetic equilibrium in global gyrokinetic simulations , 2006 .

[33]  Hideo Sugama,et al.  Non-local neoclassical transport simulation of geodesic acoustic mode , 2005 .

[34]  Laurent Villard,et al.  New conservative gyrokinetic full-f Vlasov code and its comparison to gyrokinetic δf particle-in-cell code , 2007, J. Comput. Phys..

[35]  Hideo Sugama,et al.  Transport processes and entropy production in toroidal plasmas with gyrokinetic electromagnetic turbulence , 1996 .

[36]  Alain J. Brizard,et al.  Foundations of Nonlinear Gyrokinetic Theory , 2007 .

[37]  Z. Lin,et al.  Size scaling of turbulent transport in magnetically confined plasmas. , 2002, Physical review letters.

[38]  G. Hu,et al.  The role of dissipation in the theory and simulations of homogeneous plasma turbulence, and resolution of the entropy paradox , 1994 .

[39]  Phillip Colella,et al.  Edge gyrokinetic theory and continuum simulations , 2007 .

[40]  Roman Hatzky,et al.  Particle simulations with a generalized gyrokinetic solver , 2005 .

[41]  Idomura Yasuhiro,et al.  Gyrokinetic Simulations of Tokamak Micro-Turbulence Including Kinetic Electron Effects , 2004 .

[42]  Shinji Tokuda,et al.  Global profile effects and structure formations in toroidal electron temperature gradient driven turbulence , 2005 .

[43]  Marshall N. Rosenbluth,et al.  POLOIDAL FLOW DRIVEN BY ION-TEMPERATURE-GRADIENT TURBULENCE IN TOKAMAKS , 1998 .

[44]  T. Hahm,et al.  Turbulent transport reduction by zonal flows: massively parallel simulations , 1998, Science.

[45]  Shinji Tokuda,et al.  Global gyrokinetic simulation of ion temperature gradient driven turbulence in plasmas using a canonical Maxwellian distribution , 2003 .

[46]  A. Aydemir A unified Monte Carlo interpretation of particle simulations and applications to non-neutral plasmas , 1994 .

[47]  Xiaolin Zhong,et al.  Additive Semi-Implicit Runge-Kutta Methods for Computing High-Speed Nonequilibrium Reactive Flows , 1996 .