Human Primary Auditory Cortex Follows the Shape of Heschl's Gyrus

The primary auditory cortex (PAC) is central to human auditory abilities, yet its location in the brain remains unclear. We measured the two largest tonotopic subfields of PAC (hA1 and hR) using high-resolution functional MRI at 7 T relative to the underlying anatomy of Heschl's gyrus (HG) in 10 individual human subjects. The data reveals a clear anatomical–functional relationship that, for the first time, indicates the location of PAC across the range of common morphological variants of HG (single gyri, partial duplications, and complete duplications). In 20/20 individual hemispheres, two primary mirror-symmetric tonotopic maps were clearly observed with gradients perpendicular to HG. PAC spanned both divisions of HG in cases of partial and complete duplications (11/20 hemispheres), not only the anterior division as commonly assumed. Specifically, the central union of the two primary maps (the hA1–R border) was consistently centered on the full Heschl's structure: on the gyral crown of single HGs and within the sulcal divide of duplicated HGs. The anatomical–functional variants of PAC appear to be part of a continuum, rather than distinct subtypes. These findings significantly revise HG as a marker for human PAC and suggest that tonotopic maps may have shaped HG during human evolution. Tonotopic mappings were based on only 16 min of fMRI data acquisition, so these methods can be used as an initial mapping step in future experiments designed to probe the function of specific auditory fields.

[1]  Xiaoqin Wang,et al.  Level Invariant Representation of Sounds by Populations of Neurons in Primary Auditory Cortex , 2008, The Journal of Neuroscience.

[2]  G. Recanzone,et al.  Frequency and intensity response properties of single neurons in the auditory cortex of the behaving macaque monkey. , 2000, Journal of neurophysiology.

[3]  R. Goebel,et al.  Mirror-Symmetric Tonotopic Maps in Human Primary Auditory Cortex , 2003, Neuron.

[4]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[5]  Mark A. Chevillet,et al.  Functional Correlates of the Anterolateral Processing Hierarchy in Human Auditory Cortex , 2011, The Journal of Neuroscience.

[6]  Adrian T. Lee,et al.  fMRI of human visual cortex , 1994, Nature.

[7]  D. Pandya,et al.  Architectonic analysis of the auditory‐related areas of the superior temporal region in human brain , 2007, The Journal of comparative neurology.

[8]  M. Merzenich,et al.  Responses of neurons in auditory cortex of the macaque monkey to monaural and binaural stimulation. , 1973, Journal of neurophysiology.

[9]  A. Galaburda,et al.  Cytoarchitectonic organization of the human auditory cortex , 1980, The Journal of comparative neurology.

[10]  Jonathan Winawer,et al.  Imaging retinotopic maps in the human brain , 2011, Vision Research.

[11]  J. Kaas,et al.  Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans , 2001, The Journal of comparative neurology.

[12]  A. Dale,et al.  Tonotopic organization in human auditory cortex revealed by progressions of frequency sensitivity. , 2004, Journal of neurophysiology.

[13]  Paul J. Abbas,et al.  A chronic microelectrode investigation of the tonotopic organization of human auditory cortex , 1996, Brain Research.

[14]  Robert J Zatorre,et al.  Asymmetries of the planum temporale and Heschl's gyrus: relationship to language lateralization. , 2006, Brain : a journal of neurology.

[15]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[16]  Roger B. H. Tootell,et al.  Does Retinotopy Influence Cortical Folding in Primate Visual Cortex? , 2009, The Journal of Neuroscience.

[17]  Vanessa Sluming,et al.  Heschl gyrus and its included primary auditory cortex: Structural MRI studies in healthy and diseased subjects , 2008, Journal of magnetic resonance imaging : JMRI.

[18]  I. Fried,et al.  Ultra-fine frequency tuning revealed in single neurons of human auditory cortex , 2008, Nature.

[19]  Maria Blatow,et al.  Leftward Lateralization of Auditory Cortex Underlies Holistic Sound Perception in Williams Syndrome , 2010, PloS one.

[20]  Nikos K Logothetis,et al.  Optimizing the imaging of the monkey auditory cortex: sparse vs. continuous fMRI. , 2009, Magnetic resonance imaging.

[21]  J. Kaas,et al.  Subdivisions and connections of auditory cortex in owl monkeys , 1992, The Journal of comparative neurology.

[22]  M. Eckert,et al.  Anatomical risk factors for phonological dyslexia. , 2001, Cerebral cortex.

[23]  M. Zaitsev,et al.  High resolution single-shot EPI at 7T , 2008, Magnetic Resonance Materials in Physics, Biology and Medicine.

[24]  I. H. Coriat,et al.  Histological Studies on the Localization of Cerebral Function , 1906 .

[25]  J. Kaas,et al.  Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys , 1993, The Journal of comparative neurology.

[26]  G. Smith,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. , 1927 .

[27]  Nina Kraus,et al.  Relating Structure to Function: Heschl's Gyrus and Acoustic Processing , 2009, The Journal of Neuroscience.

[28]  Colin Humphries,et al.  Tonotopic organization of human auditory cortex , 2010, NeuroImage.

[29]  Edward L. Bartlett,et al.  Fine frequency tuning in monkey auditory cortex and thalamus. , 2011, Journal of neurophysiology.

[30]  A. Galaburda,et al.  Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. , 1993, Cerebral cortex.

[31]  Rainer Goebel,et al.  Reduced volume of Heschl's gyrus in tinnitus , 2009, NeuroImage.

[32]  Wietske van der Zwaag,et al.  Where sound position influences sound object representations: A 7-T fMRI study , 2011, NeuroImage.

[33]  Nikos Makris,et al.  Automatically parcellating the human cerebral cortex. , 2004, Cerebral cortex.

[34]  D. Lewis,et al.  Mapping auditory core, lateral belt, and parabelt cortices in the human superior temporal gyrus , 2005, The Journal of comparative neurology.

[35]  Hanna Damasio,et al.  A morphometric analysis of auditory brain regions in congenitally deaf adults , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[36]  P. Morosan,et al.  Probabilistic Mapping and Volume Measurement of Human Primary Auditory Cortex , 2001, NeuroImage.

[37]  T. Hackett,et al.  Linking Topography to Tonotopy in the Mouse Auditory Thalamocortical Circuit , 2011, The Journal of Neuroscience.

[38]  Christoph E. Schreiner,et al.  Auditory Cortex Mapmaking: Principles, Projections, and Plasticity , 2007, Neuron.

[39]  J. Kaas,et al.  Subdivisions of auditory cortex and processing streams in primates. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[40]  P. Morosan,et al.  Human Primary Auditory Cortex: Cytoarchitectonic Subdivisions and Mapping into a Spatial Reference System , 2001, NeuroImage.

[41]  D. V. van Essen,et al.  A tension-based theory of morphogenesis and compact wiring in the central nervous system. , 1997, Nature.

[42]  C. Economo,et al.  Über Windungsrelief, Maße und Rindenarchitektonik der Supratemporalfläche, ihre individuellen und ihre Seitenunterschiede , 1930 .

[43]  S. Scott,et al.  Born with an Ear for Dialects? Structural Plasticity in the Expert Phonetician Brain , 2011, The Journal of Neuroscience.

[44]  Tobias Kober,et al.  MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field , 2010, NeuroImage.

[45]  M. Mishkin,et al.  Serial and parallel processing in rhesus monkey auditory cortex , 1997, The Journal of comparative neurology.

[46]  N. Gage,et al.  Rightward hemispheric asymmetries in auditory language cortex in children with autistic disorder: an MRI investigation , 2009, Journal of Neurodevelopmental Disorders.

[47]  Teemu Rinne,et al.  Functional Maps of Human Auditory Cortex: Effects of Acoustic Features and Attention , 2009, PloS one.

[48]  N. Logothetis,et al.  Functional Imaging Reveals Numerous Fields in the Monkey Auditory Cortex , 2006, PLoS biology.

[49]  S. Clarke,et al.  Cytochrome Oxidase, Acetylcholinesterase, and NADPH-Diaphorase Staining in Human Supratemporal and Insular Cortex: Evidence for Multiple Auditory Areas , 1997, NeuroImage.

[50]  Amir Amedi,et al.  Extensive Cochleotopic Mapping of Human Auditory Cortical Fields Obtained with Phase-Encoding fMRI , 2011, PloS one.

[51]  M. Scherg,et al.  Morphology of Heschl's gyrus reflects enhanced activation in the auditory cortex of musicians , 2002, Nature Neuroscience.

[52]  David A. Leopold,et al.  Effect of sound intensity on tonotopic fMRI maps in the unanesthetized monkey , 2010, NeuroImage.

[53]  A. Palmer,et al.  Histochemical identification of cortical areas in the auditory region of the human brain , 2002, Experimental Brain Research.

[54]  S. Clarke,et al.  Compartments within human primary auditory cortex: evidence from cytochrome oxidase and acetylcholinesterase staining , 1998, The European journal of neuroscience.

[55]  Patrick C M Wong,et al.  Volume of left Heschl's Gyrus and linguistic pitch learning. , 2008, Cerebral cortex.

[56]  Alan C. Evans,et al.  Interhemispheric anatomical differences in human primary auditory cortex: probabilistic mapping and volume measurement from magnetic resonance scans. , 1996, Cerebral cortex.

[57]  C. Leonard,et al.  Normal variation in the frequency and location of human auditory cortex landmarks. Heschl's gyrus: where is it? , 1998, Cerebral cortex.

[58]  D. P. Phillips,et al.  Level-dependent representation of stimulus frequency in cat primary auditory cortex , 2004, Experimental Brain Research.

[59]  Peter G. Morris,et al.  fMRI at 1.5, 3 and 7 T: Characterising BOLD signal changes , 2009, NeuroImage.

[60]  D. Hubl,et al.  Structural Analysis of Heschl’s Gyrus in Schizophrenia Patients with Auditory Hallucinations , 2009, Neuropsychobiology.