An Equilibrated a Posteriori Error Estimator for Arbitrary-Order Nédélec Elements for Magnetostatic Problems

We present a novel a posteriori error estimator for Nédélec elements for magnetostatic problems that is constant-free, i.e. it provides an upper bound on the error that does not involve a generic constant. The estimator is based on equilibration of the magnetic field and only involves small local problems that can be solved in parallel. Such an error estimator is already available for the lowest-degree Nédélec element (Braess and Schöberl in Math Comput 77(262):651-672, 2008) and requires solving local problems on vertex patches. The novelty of our estimator is that it can be applied to Nédélec elements of arbitrary degree. Furthermore, our estimator does not require solving problems on vertex patches, but instead requires solving problems on only single elements, single faces, and very small sets of nodes. We prove reliability and efficiency of the estimator and present several numerical examples that confirm this.

[1]  Serge Nicaise,et al.  About the gauge conditions arising in Finite Element magnetostatic problems , 2019, Comput. Math. Appl..

[2]  R. Hoppe,et al.  Residual based a posteriori error estimators for eddy current computation , 2000 .

[3]  F. Piriou,et al.  Residual and equilibrated error estimators for magnetostatic problems solved by finite element method , 2013, IEEE Transactions on Magnetics.

[4]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[5]  Serge Nicaise,et al.  Two guaranteed equilibrated error estimators for Harmonic formulations in eddy current problems , 2019, Comput. Math. Appl..

[6]  W. Prager,et al.  Approximations in elasticity based on the concept of function space , 1947 .

[7]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[8]  Martin Vohralík,et al.  Polynomial-Degree-Robust A Posteriori Estimates in a Unified Setting for Conforming, Nonconforming, Discontinuous Galerkin, and Mixed Discretizations , 2015, SIAM J. Numer. Anal..

[9]  Sergey Repin,et al.  Guaranteed Error Bounds for Conforming Approximations of a Maxwell Type Problem , 2010 .

[10]  T. Apel Anisotropic Finite Elements: Local Estimates and Applications , 1999 .

[11]  Serge Nicaise,et al.  A guaranteed equilibrated error estimator for the $\mathbf{A}-\varphi$ and $\mathbf{T}-\Omega$ magnetodynamic harmonic formulations of the Maxwell system , 2016 .

[12]  Serge Nicaise,et al.  A guaranteed equilibrated error estimator for the A – Φ and T – Ω magnetodynamic harmonic formulations of the Maxwell system , 2018 .

[13]  Serge Nicaise,et al.  On Zienkiewicz–Zhu error estimators for Maxwell's equations , 2005 .

[14]  Douglas N. Arnold,et al.  Locally Adapted Tetrahedral Meshes Using Bisection , 2000, SIAM J. Sci. Comput..

[15]  Martin Costabel,et al.  On Bogovskiĭ and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains , 2008, 0808.2614.

[16]  Ralf Hiptmair,et al.  Hierarchical Error Estimator for Eddy Current Computation , 2000 .

[17]  R. Hiptmair Finite elements in computational electromagnetism , 2002, Acta Numerica.

[18]  Dietrich Braess,et al.  Equilibrated residual error estimator for edge elements , 2007, Math. Comput..

[19]  Douglas N. Arnold,et al.  Multigrid in H (div) and H (curl) , 2000, Numerische Mathematik.

[20]  Z. Cai,et al.  Robust a posteriori error estimation for finite element approximation to H(curl) problem , 2015, 1510.00027.

[21]  Veronika Pillwein,et al.  Sparsity optimized high order finite element functions for H(curl) on tetrahedra , 2013, Adv. Appl. Math..

[22]  R. Hiptmair Multigrid Method for Maxwell's Equations , 1998 .

[23]  J. Nédélec A new family of mixed finite elements in ℝ3 , 1986 .