Hierarchical architectures of Co3O4 ultrafine nanowires grown on Co3O4 nanowires with fascinating electrochemical performance

A facile method to synthesize hierarchical architectures of Co3O4 nanowires@Co3O4 ultrafine nanowires grown on Ni foam was developed here. The unique architectures consisting of numerous ultrafine Co3O4 nanowires (shell) well grown on the surface of a Co3O4 nanowire (core) delivered remarkable electrochemical performance with ultrahigh specific capacitance (1640 F g−1 at a current density of 2 mA cm−2), superior rate capability (66% retention of the initial capacitance from 2 mA cm−2 to 50 mA cm−2) and outstanding cycling stability (∼99.03% retention of the initial capacitance after 10000 cycles). Such fascinating capacitive behaviors can make these hierarchical architectures of Co3O4 nanowires@Co3O4 ultrafine nanowires promising electrode materials in electrochemical applications.

[1]  S. Balasubramanian,et al.  Fabrication of Natural Polymer Assisted Mesoporous Co3O4/Carbon Composites for Supercapacitors , 2015 .

[2]  Yi Cui,et al.  Self-assembled three-dimensional and compressible interdigitated thin-film supercapacitors and batteries , 2015, Nature Communications.

[3]  Guowei Yang,et al.  All-Solid-State Symmetric Supercapacitor Based on Co3O4 Nanoparticles on Vertically Aligned Graphene. , 2015, ACS nano.

[4]  Lei Liu,et al.  Hollow Co3O4 microspheres with nano-sized shells: one-step large-scale synthesis, growth mechanism and supercapacitor properties , 2015 .

[5]  Hua Zhang,et al.  Iron oxide-decorated carbon for supercapacitor anodes with ultrahigh energy density and outstanding cycling stability. , 2015, ACS nano.

[6]  G. Qiao,et al.  Co3O4 nanowires@MnO2 nanolayer or nanoflakes core–shell arrays for high-performance supercapacitors: The influence of morphology on performance , 2015 .

[7]  Huanwen Wang,et al.  Facile synthesis of mesoporous cobalt oxide rugby balls for electrochemical energy storage , 2015 .

[8]  Zhiyang Zhang,et al.  Temperature-dependent self-assembly of NiO/Co3O4 composites for supercapacitor electrodes with good cycling performance: from nanoparticles to nanorod arrays , 2015 .

[9]  Yihe Zhang,et al.  Hierarchical 3D Co3O4@MnO2 core/shell nanoconch arrays on Ni foam for enhanced electrochemical performance , 2015, Journal of Solid State Electrochemistry.

[10]  S. Liang,et al.  Facile synthesis of nanorod-assembled multi-shelled Co3O4 hollow microspheres for high-performance supercapacitors , 2014 .

[11]  Xiang Ding,et al.  Controllable synthesis of mesoporous Co3O4 nanoflake array and its application for supercapacitor , 2014 .

[12]  Rujia Zou,et al.  MnMoO4·4H2O nanoplates grown on a Ni foam substrate for excellent electrochemical properties , 2014 .

[13]  Wei Huang,et al.  Porous hollow Co₃O₄ with rhombic dodecahedral structures for high-performance supercapacitors. , 2014, Nanoscale.

[14]  Xiaoping Shen,et al.  Facile synthesis of Co3O4 porous nanosheets/reduced graphene oxide composites and their excellent supercapacitor performance , 2014 .

[15]  Guiling Wang,et al.  Ultrathin Nanoflakes Assembled 3D Hierarchical Mesoporous Co3O4 Nanoparticles for High‐Rate Pseudocapacitors , 2014 .

[16]  B. Liu,et al.  High-performance supercapacitor electrode based on the unique ZnO@Co₃O4₄ core/shell heterostructures on nickel foam. , 2014, ACS applied materials & interfaces.

[17]  D. Xiao,et al.  Three-dimensional enoki mushroom-like Co3O4 hierarchitectures constructed by one-dimension nanowires for high-performance supercapacitors , 2014 .

[18]  Wei-bin Zhang,et al.  Fabrication of 3D Co3O4–Ni3(VO4)2 heterostructured nanorods on nickel foam possessing improved electrochemical properties for supercapacitor electrodes , 2014 .

[19]  Yongfeng Li,et al.  Synthesis of ultrathin mesoporous NiCo2O4 nanosheets on carbon fiber paper as integrated high-performance electrodes for supercapacitors , 2014 .

[20]  Xuan Zhang,et al.  Surfactant dependent self-organization of Co3O4 nanowires on Ni foam for high performance supercapacitors: from nanowire microspheres to nanowire paddy fields. , 2014, Nanoscale.

[21]  Teng Zhai,et al.  Improving the Cycling Stability of Metal–Nitride Supercapacitor Electrodes with a Thin Carbon Shell , 2014, Advanced Energy Materials.

[22]  Bin Wang,et al.  Effects of solvent on the morphology of nanostructured Co3O4 and its application for high-performance supercapacitors , 2013 .

[23]  Yehui Zhang,et al.  Self-assembled porous NiCo2O4 hetero-structure array for electrochemical capacitor , 2013 .

[24]  G. Muralidharan,et al.  Microwave assisted synthesis of Co3O4 nanoparticles for high-performance supercapacitors , 2013 .

[25]  Dong‐Wan Kim,et al.  Scalable One-pot Bacteria-templating Synthesis Route toward Hierarchical, Porous-Co3O4 Superstructures for Supercapacitor Electrodes , 2013, Scientific Reports.

[26]  Zhiyi Lu,et al.  Hierarchical Ni0.25Co0.75(OH)2 nanoarrays for a high-performance supercapacitor electrode prepared by an in situ conversion process , 2013 .

[27]  Qiang Zhao,et al.  Facile and green synthesis of mesoporous Co3O4 nanocubes and their applications for supercapacitors. , 2013, Nanoscale.

[28]  Q. Yu,et al.  Novel morphologic Co3O4 of flower-like hierarchical microspheres as electrode material for electrochemical capacitors , 2013 .

[29]  F. Gao,et al.  Facile synthesis of hollow Co3O4 boxes for high capacity supercapacitor , 2013 .

[30]  Eleanor I. Gillette,et al.  Self-limiting electrodeposition of hierarchical MnO₂ and M(OH)₂/MnO₂ nanofibril/nanowires: mechanism and supercapacitor properties. , 2013, ACS nano.

[31]  Aiqin Zhang,et al.  3D Hierarchical Co3O4 Twin‐Spheres with an Urchin‐Like Structure: Large‐Scale Synthesis, Multistep‐Splitting Growth, and Electrochemical Pseudocapacitors , 2012 .

[32]  Jian Jiang,et al.  Recent Advances in Metal Oxide‐based Electrode Architecture Design for Electrochemical Energy Storage , 2012, Advanced materials.

[33]  Yang-Kook Sun,et al.  Challenges facing lithium batteries and electrical double-layer capacitors. , 2012, Angewandte Chemie.

[34]  K. Ho,et al.  Synthesis of Co3O4 nanosheets via electrodeposition followed by ozone treatment and their application to high-performance supercapacitors , 2012 .

[35]  Hua Zhang,et al.  Nanoporous Walls on Macroporous Foam: Rational Design of Electrodes to Push Areal Pseudocapacitance , 2012, Advanced materials.

[36]  Haiyan Wang,et al.  Facile and green synthesis of Co3O4 nanoplates/graphene nanosheets composite for supercapacitor , 2012, Journal of Solid State Electrochemistry.

[37]  H. Pang,et al.  Dendrite-like Co3O4 nanostructure and its applications in sensors, supercapacitors and catalysis. , 2012, Dalton transactions.

[38]  Xiuli Wang,et al.  High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage. , 2012, ACS nano.

[39]  H. Alshareef,et al.  Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. , 2012, Nano letters.

[40]  J. Tu,et al.  Freestanding Co3O4 nanowire array for high performance supercapacitors , 2012 .

[41]  Zhen Zhou,et al.  Li ion battery materials with core-shell nanostructures. , 2011, Nanoscale.

[42]  D. Mitlin,et al.  Supercapacitive Properties of Hydrothermally Synthesized Co3O4 Nanostructures , 2011 .

[43]  F. Wei,et al.  Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density , 2011 .

[44]  Yi Cui,et al.  Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. , 2011, Nano letters.

[45]  H. Gong,et al.  Co3O4 Nanowire@MnO2 Ultrathin Nanosheet Core/Shell Arrays: A New Class of High‐Performance Pseudocapacitive Materials , 2011, Advanced materials.

[46]  J. Tu,et al.  Mesoporous Co3O4 monolayer hollow-sphere array as electrochemical pseudocapacitor material. , 2011, Chemical communications.

[47]  Hao Jiang,et al.  Ultrafine manganese dioxide nanowire network for high-performance supercapacitors. , 2011, Chemical communications.

[48]  M. Antonietti,et al.  Nitrogen‐Containing Hydrothermal Carbons with Superior Performance in Supercapacitors , 2010, Advanced materials.

[49]  Peihua Huang,et al.  Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. , 2010, Nature nanotechnology.

[50]  Y. Y. Li,et al.  General Synthesis of Large-Scale Arrays of One-Dimensional Nanostructured Co3O4 Directly on Heterogeneous Substrates , 2010 .

[51]  Shih‐Yuan Lu,et al.  Cobalt Oxide Aerogels of Ideal Supercapacitive Properties Prepared with an Epoxide Synthetic Route , 2009 .

[52]  F. Huang,et al.  An entirely electrochemical preparation of a nano-structured cobalt oxide electrode with superior redox activity , 2009, Nanotechnology.

[53]  Bei Wang,et al.  HYDROTHERMAL SYNTHESIS AND OPTICAL, MAGNETIC, AND SUPERCAPACITANCE PROPERTIES OF NANOPOROUS COBALT OXIDE NANORODS , 2009 .

[54]  L. Archer,et al.  Thermal formation of mesoporous single-crystal Co3O4 nano-needles and their lithium storage properties , 2008 .

[55]  John R. Miller,et al.  Electrochemical Capacitors for Energy Management , 2008, Science.