Improved upper bounds on the L(2, 1) -labeling of the skew and converse skew product graphs

An L(2,1)-labeling of a graph G is a function f from the vertex set V(G) to the set of all nonnegative integers such that |f(x)-f(y)|>=2 if d(x,y)=1 and |f(x)-f(y)|>=1 if d(x,y)=2, where d(x,y) denotes the distance between x and y in G. The L(2,1)-labeling number @l(G) of G is the smallest number k such that G has an L(2,1)-labeling with max{f(v):v@?V(G)}=k. Griggs and Yeh conjecture that @l(G)@?@D^2 for any simple graph with maximum degree @D>=2. This paper considers the graph formed by the skew product and the converse skew product of two graphs with a new approach on the analysis of adjacency matrices of the graphs as in [W.C. Shiu, Z. Shao, K.K. Poon, D. Zhang, A new approach to the L(2,1)-labeling of some products of graphs, IEEE Trans. Circuits Syst. II: Express Briefs (to appear)] and improves the previous upper bounds significantly.

[1]  Denise Sakai,et al.  Labeling Chordal Graphs: Distance Two Condition , 1994 .

[2]  Jan van Leeuwen,et al.  lambda-Coloring of Graphs , 2000, STACS.

[3]  W. K. Hale Frequency assignment: Theory and applications , 1980, Proceedings of the IEEE.

[4]  Rudolf Mathar,et al.  Channel assignment in cellular radio networks , 1993 .

[5]  Gerard J. Chang,et al.  The L(2, 1)-Labeling Problem on Graphs , 1996, SIAM J. Discret. Math..

[6]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[7]  S. Klavzar,et al.  The /spl Delta//sup 2/-conjecture for L(2,1)-labelings is true for direct and strong products of graphs , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[8]  LI Shuang-cheng,et al.  The L(d■,1 ■)-labeling of graphs , 2003 .

[9]  John P. Georges,et al.  Labeling Products of Complete Graphs with a Condition at Distance Two , 2001, SIAM J. Discret. Math..

[10]  Sandi Klavzar,et al.  The Δ 2 -conjecture for L(2, 1)-labelings is true for direct and strong products of graphs. , 2006 .

[11]  John P. Georges,et al.  On the lambda-Number of Qn and Related Graphs , 1995, SIAM J. Discret. Math..

[12]  Fred S. Roberts,et al.  T-colorings of graphs: recent results and open problems , 1991, Discret. Math..

[13]  Student Member,et al.  Graph Products Based on the Distance in Graphs ∗ , 2000 .

[14]  Daphne Der-Fen Liu,et al.  On L(d, 1)-labelings of graphs , 2000, Discret. Math..

[15]  Yoshiyasu Takefuji,et al.  A neural network parallel algorithm for channel assignment problems in cellular radio networks , 1992 .

[16]  John P. Georges,et al.  Relating path coverings to vertex labellings with a condition at distance two , 1994, Discret. Math..

[17]  David Zhang,et al.  The L(2, 1)-labeling on the skew and converse skew products of graphs , 2007, Appl. Math. Lett..

[18]  Daniel Král,et al.  A Theorem about the Channel Assignment Problem , 2003, SIAM J. Discret. Math..

[19]  G. G. Coghill,et al.  Channel assignment through evolutionary optimization , 1996 .

[20]  Gerard J. Chang,et al.  Distance-two labelings of graphs , 2003, Eur. J. Comb..

[21]  Zhendong Shao,et al.  The L(2,1)-labeling and operations of graphs , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[22]  D. Kunz,et al.  Channel assignment for cellular radio using neural networks , 1991 .

[23]  Jan Kratochvíl,et al.  Fixed-parameter complexity of lambda-labelings , 2001, Discret. Appl. Math..

[24]  G. Chang,et al.  Labeling graphs with a condition at distance two , 2005 .

[25]  Jerrold R. Griggs,et al.  Labelling Graphs with a Condition at Distance 2 , 1992, SIAM J. Discret. Math..