Adaptive algorithms for sparse system identification

In this paper, identification of sparse linear and nonlinear systems is considered via compressive sensing methods. Efficient algorithms are developed based on Kalman filtering and Expectation-Maximization. The proposed algorithms are applied to linear and nonlinear channels which are represented by sparse Volterra models and incorporate the effect of power amplifiers. Simulation studies confirm significant performance gains in comparison to conventional non-sparse methods.

[1]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[2]  Burton R. Saltzberg,et al.  Multi-Carrier Digital Communications: Theory and Applications of Ofdm , 1999 .

[3]  Ali H. Sayed,et al.  Adaptive Filters , 2008 .

[4]  Sergio Benedetto,et al.  Principles of Digital Transmission: With Wireless Applications , 1999 .

[5]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[6]  Donald L. Duttweiler,et al.  Proportionate normalized least-mean-squares adaptation in echo cancelers , 2000, IEEE Trans. Speech Audio Process..

[7]  Namrata Vaswani,et al.  Kalman filtered Compressed Sensing , 2008, 2008 15th IEEE International Conference on Image Processing.

[8]  Dimitri Kanevsky,et al.  A Simple Method for Sparse Signal Recovery from Noisy Observations Using Kalman Filtering , 2008 .

[9]  Lennart Ljung General structure of adaptive algorithms: adaptation and tracking , 1993 .

[10]  Michael Elad,et al.  From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images , 2009, SIAM Rev..

[11]  Meir Feder,et al.  Statistical signal processing using a class of iterative estimation algorithms , 1987 .

[12]  Joel A. Tropp,et al.  Just relax: convex programming methods for identifying sparse signals in noise , 2006, IEEE Transactions on Information Theory.

[13]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[14]  M. Isaksson,et al.  A comparative analysis of behavioral models for RF power amplifiers , 2006, IEEE Transactions on Microwave Theory and Techniques.

[15]  Nicholas Kalouptsidis,et al.  Adaptive system identification and signal processing algorithms , 1993 .

[16]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[17]  J. S. Kenney,et al.  Behavioral modeling of nonlinear RF power amplifiers considering memory effects , 2003 .

[18]  George Carayannis,et al.  A fast sequential algorithm for least-squares filtering and prediction , 1983 .

[19]  Robert D. Nowak,et al.  Compressed channel sensing , 2008, 2008 42nd Annual Conference on Information Sciences and Systems.

[20]  Georgios B. Giannakis,et al.  RLS-weighted Lasso for adaptive estimation of sparse signals , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[21]  T. Kailath,et al.  Numerically stable fast transversal filters for recursive least squares adaptive filtering , 1991, IEEE Trans. Signal Process..

[22]  Andrew H. Jazwinski,et al.  Adaptive filtering , 1969, Autom..

[23]  Ehud Weinstein,et al.  Iterative and sequential algorithms for multisensor signal enhancement , 1994, IEEE Trans. Signal Process..

[24]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[25]  Alfred O. Hero,et al.  Sparse LMS for system identification , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[26]  Robert D. Nowak,et al.  An EM algorithm for wavelet-based image restoration , 2003, IEEE Trans. Image Process..

[27]  George-Othon Glentis,et al.  Efficient algorithms for Volterra system identification , 1999, IEEE Trans. Signal Process..

[28]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[29]  Mário A. T. Figueiredo,et al.  Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.

[30]  Vahid Tarokh,et al.  Comparison of SPARLS and RLS algorithms for adaptive filtering , 2009, 2009 IEEE Sarnoff Symposium.