Global Weak Solutions to Equations of Compressible Miscible Flows in Porous Media
暂无分享,去创建一个
[1] X. B. Feng. On Existence and Uniqueness Results for a Coupled System Modeling Miscible Displacement in Porous Media , 1995 .
[2] D. W. Peaceman. Fundamentals of numerical reservoir simulation , 1977 .
[3] Felix Otto,et al. L1-Contraction and Uniqueness for Quasilinear Elliptic–Parabolic Equations , 1996 .
[4] Hermano Frid,et al. Initial Boundary Value Problems for a Quasi-linear Parabolic System in Three-Phase Capillary Flow in Porous Media , 2005, SIAM J. Math. Anal..
[5] Richard E. Ewing,et al. Mathematical analysis for reservoir models , 1999 .
[6] R. Helmig. Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems , 2011 .
[7] H. Amann. Dynamic theory of quasilinear parabolic systems , 1989 .
[8] O. A. Ladyzhenskai︠a︡,et al. Linear and Quasi-linear Equations of Parabolic Type , 1995 .
[9] A. Ziani,et al. Global weak solutions for a parabolic system modeling a one-dimensional miscible flow in porous media , 1998 .
[10] Michel Langlais,et al. Mathematical analysis of miscible displacement in porous medium , 1992 .
[11] J. Lions. Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .
[12] Jean E. Roberts,et al. Numerical methods for a model for compressible miscible displacement in porous media , 1983 .
[13] G. Chavent. Mathematical models and finite elements for reservoir simulation , 1986 .
[14] Andro Mikelić. Mathematical theory of stationary miscible filtration , 1991 .