Global Weak Solutions to Equations of Compressible Miscible Flows in Porous Media

We study the one‐dimensional equations governing compressible flows of m miscible components in a porous medium. The equations are reduced to a quasi‐linear parabolic system for the discharge function P and the concentrations $c_i$. The equations of this system are strongly coupled since the parabolic equation for $c_i$ contains both the second derivative $c_{ixx}$ and the second derivative $P_{xx}$. We prove global weak solvability of an initial boundary‐value problem both in the Eulerian and Lagrangian formulations.

[1]  X. B. Feng On Existence and Uniqueness Results for a Coupled System Modeling Miscible Displacement in Porous Media , 1995 .

[2]  D. W. Peaceman Fundamentals of numerical reservoir simulation , 1977 .

[3]  Felix Otto,et al.  L1-Contraction and Uniqueness for Quasilinear Elliptic–Parabolic Equations , 1996 .

[4]  Hermano Frid,et al.  Initial Boundary Value Problems for a Quasi-linear Parabolic System in Three-Phase Capillary Flow in Porous Media , 2005, SIAM J. Math. Anal..

[5]  Richard E. Ewing,et al.  Mathematical analysis for reservoir models , 1999 .

[6]  R. Helmig Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems , 2011 .

[7]  H. Amann Dynamic theory of quasilinear parabolic systems , 1989 .

[8]  O. A. Ladyzhenskai︠a︡,et al.  Linear and Quasi-linear Equations of Parabolic Type , 1995 .

[9]  A. Ziani,et al.  Global weak solutions for a parabolic system modeling a one-dimensional miscible flow in porous media , 1998 .

[10]  Michel Langlais,et al.  Mathematical analysis of miscible displacement in porous medium , 1992 .

[11]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[12]  Jean E. Roberts,et al.  Numerical methods for a model for compressible miscible displacement in porous media , 1983 .

[13]  G. Chavent Mathematical models and finite elements for reservoir simulation , 1986 .

[14]  Andro Mikelić Mathematical theory of stationary miscible filtration , 1991 .