Single-cell RNA-seq reveals hidden transcriptional variation in malaria parasites

Single-cell RNA-sequencing is revolutionising our understanding of seemingly homogeneous cell populations but has not yet been widely applied to single-celled organisms. Transcriptional variation in unicellular malaria parasites from the Plasmodium genus is associated with critical phenotypes including red blood cell invasion and immune evasion, yet transcriptional variation at an individual parasite level has not been examined in depth. Here, we describe the adaptation of a single-cell RNA-sequencing (scRNA-seq) protocol to deconvolute transcriptional variation for more than 500 individual parasites of both rodent and human malaria comprising asexual and sexual life-cycle stages. We uncover previously hidden discrete transcriptional signatures during the pathogenic part of the life cycle, suggesting that expression over development is not as continuous as commonly thought. In transmission stages, we find novel, sex-specific roles for differential expression of contingency gene families that are usually associated with immune evasion and pathogenesis.

[1]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[2]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[3]  Michael Ruogu Zhang,et al.  Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. , 1998, Molecular biology of the cell.

[4]  Åsa K. Björklund,et al.  Smart-seq2 for sensitive full-length transcriptome profiling in single cells , 2013 .

[5]  P. Preiser,et al.  A rhoptry-protein-associated mechanism of clonal phenotypic variation in rodent malaria , 1999, Nature.

[6]  R. Sinden,et al.  A Plasmodium falciparum Strain Expressing GFP throughout the Parasite's Life-Cycle , 2010, PloS one.

[7]  Sergio Contrino,et al.  ArrayExpress—a public repository for microarray gene expression data at the EBI , 2004, Nucleic Acids Res..

[8]  Cole Trapnell,et al.  The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells , 2014, Nature Biotechnology.

[9]  Hans Clevers,et al.  Single-cell messenger RNA sequencing reveals rare intestinal cell types , 2015, Nature.

[10]  Sarah A. Teichmann,et al.  Power Analysis of Single Cell RNA-Sequencing Experiments , 2016 .

[11]  S. Henikoff,et al.  Amino acid substitution matrices from protein blocks. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Zbynek Bozdech,et al.  Transcriptional profiling of growth perturbations of the human malaria parasite Plasmodium falciparum , 2010, Nature Biotechnology.

[13]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[14]  David L. Tabb,et al.  A proteomic view of the Plasmodium falciparum life cycle , 2002, Nature.

[15]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[16]  Martin Hemberg,et al.  Modelling dropouts allows for unbiased identification of marker genes in scRNASeq experiments , 2016 .

[17]  Sean R. Davis,et al.  NCBI GEO: archive for functional genomics data sets—update , 2012, Nucleic Acids Res..

[18]  M. Llinás,et al.  Nutrient sensing modulates malaria parasite virulence , 2017, Nature.

[19]  Mauricio Barahona,et al.  SC3 - consensus clustering of single-cell RNA-Seq data , 2016 .

[20]  A. Thomas,et al.  Plasmodium falciparum 19-Kilodalton Merozoite Surface Protein 1 (MSP1)-Specific Antibodies That Interfere with Parasite Growth In Vitro Can Inhibit MSP1 Processing, Merozoite Invasion, and Intracellular Parasite Development , 2011, Infection and Immunity.

[21]  J. Derisi,et al.  The Transcriptome of the Intraerythrocytic Developmental Cycle of Plasmodium falciparum , 2003, PLoS biology.

[22]  Jessica C Kissinger,et al.  EuPathDB: The Eukaryotic Pathogen Genomics Database Resource. , 2018, Methods in molecular biology.

[23]  W. Breuer,et al.  Characterization of permeation pathways in the plasma membrane of human erythrocytes infected with early stages of Plasmodium falciparum: Association with parasite development , 1985, Journal of cellular physiology.

[24]  S. Sharp,et al.  Improved synchronous production of Plasmodium falciparum gametocytes in vitro. , 2007, Molecular and biochemical parasitology.

[25]  Manuel Llinás,et al.  Comparative whole genome transcriptome analysis of three Plasmodium falciparum strains , 2006, Nucleic acids research.

[26]  Åsa K. Björklund,et al.  Smart-seq2 for sensitive full-length transcriptome profiling in single cells , 2013, Nature Methods.

[27]  O. Elemento,et al.  Single-cell RNA sequencing reveals a signature of sexual commitment in malaria parasites , 2017, Nature.

[28]  Aaron R. Quinlan,et al.  Bioinformatics Applications Note Genome Analysis Bedtools: a Flexible Suite of Utilities for Comparing Genomic Features , 2022 .

[29]  J. Rayner,et al.  A Knockout Screen of ApiAP2 Genes Reveals Networks of Interacting Transcriptional Regulators Controlling the Plasmodium Life Cycle , 2017, Cell host & microbe.

[30]  Monika S. Kowalczyk,et al.  Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells , 2015, Genome research.

[31]  Sanjai Kumar,et al.  Mitosis in the Human Malaria Parasite Plasmodium falciparum , 2011, Eukaryotic Cell.

[32]  J. Marioni,et al.  Single-Cell Landscape of Transcriptional Heterogeneity and Cell Fate Decisions during Mouse Early Gastrulation , 2017, Cell reports.

[33]  N. Neff,et al.  Reconstructing lineage hierarchies of the distal lung epithelium using single cell RNA-seq , 2014, Nature.

[34]  C. Janse,et al.  Standardization in generating and reporting genetically modified rodent malaria parasites: the RMgmDB database. , 2013, Methods in molecular biology.

[35]  Aaron T. L. Lun,et al.  scater: pre-processing, quality control, normalisation and visualisation of single-cell RNA-seq data in R , 2016 .

[36]  Yarden Katz,et al.  A single-cell survey of the small intestinal epithelium , 2017, Nature.

[37]  Julien Guizetti,et al.  Silence, activate, poise and switch! Mechanisms of antigenic variation in Plasmodium falciparum , 2013, Cellular microbiology.

[38]  E. Yavin,et al.  Antisense long noncoding RNAs regulate var gene activation in the malaria parasite Plasmodium falciparum , 2015, Proceedings of the National Academy of Sciences.

[39]  P. Eckhoff,et al.  A computational lens for sexual-stage transmission, reproduction, fitness and kinetics in Plasmodium falciparum , 2016, Malaria Journal.

[40]  N. Grishin,et al.  The conserved plant sterility gene HAP2 functions after attachment of fusogenic membranes in Chlamydomonas and Plasmodium gametes. , 2008, Genes & development.

[41]  P. Nilsson,et al.  Default Pathway of var2csa Switching and Translational Repression in Plasmodium falciparum , 2008, PloS one.

[42]  Ulrike Böhme,et al.  A comprehensive evaluation of rodent malaria parasite genomes and gene expression , 2014, BMC Biology.

[43]  Haiming Wang,et al.  GeneDB—an annotation database for pathogens , 2011, Nucleic Acids Res..

[44]  Manuel Llinás,et al.  A transcriptional switch underlies commitment to sexual development in malaria parasites , 2014 .

[45]  Isabelle Morlais,et al.  Malaria Journal BioMed Central Methodology , 2008 .

[46]  T. Bousema,et al.  Integrated transcriptomic and proteomic analyses of P. falciparum gametocytes: molecular insight into sex-specific processes and translational repression , 2016, Nucleic acids research.

[47]  Fabian J Theis,et al.  Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells , 2015, Nature Biotechnology.

[48]  J. Rayner,et al.  Functional Profiling of a Plasmodium Genome Reveals an Abundance of Essential Genes , 2017, Cell.

[49]  Mauricio Barahona,et al.  SC3 - consensus clustering of single-cell RNA-Seq data , 2016, Nature Methods.

[50]  Samuel A. Assefa,et al.  New insights into the blood-stage transcriptome of Plasmodium falciparum using RNA-Seq , 2010, Molecular microbiology.

[51]  J. Rowley,et al.  Oligo(dT) primer generates a high frequency of truncated cDNAs through internal poly(A) priming during reverse transcription , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Mark N. Wass,et al.  Proteomic analysis of the Plasmodium male gamete reveals the key role for glycolysis in flagellar motility , 2014, Malaria Journal.

[53]  Nicholas P. J. Day,et al.  Genomic epidemiology of artemisinin resistant malaria. , 2016, eLife.

[54]  Joseph L DeRisi,et al.  Whole-genome analysis of mRNA decay in Plasmodium falciparum reveals a global lengthening of mRNA half-life during the intra-erythrocytic development cycle , 2007, Genome Biology.

[55]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[56]  Evarist Planet,et al.  Transcriptional variation in the malaria parasite Plasmodium falciparum , 2012, Genome research.

[57]  I. Hellmann,et al.  Comparative Analysis of Single-Cell RNA Sequencing Methods , 2016, bioRxiv.

[58]  Frank Schwach,et al.  A Genome-Scale Vector Resource Enables High-Throughput Reverse Genetic Screening in a Malaria Parasite , 2015, Cell host & microbe.

[59]  L. Pachter,et al.  Streaming fragment assignment for real-time analysis of sequencing experiments , 2012, Nature Methods.

[60]  Jeffrey T Leek,et al.  Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown , 2016, Nature Protocols.

[61]  H. Tanke,et al.  Variant Exported Blood-Stage Proteins Encoded by Plasmodium Multigene Families Are Expressed in Liver Stages Where They Are Exported into the Parasitophorous Vacuole , 2016, PLoS pathogens.

[62]  X. Su,et al.  Directional gene expression and antisense transcripts in sexual and asexual stages of Plasmodium falciparum , 2011, BMC Genomics.

[63]  John R Yates,et al.  A Comprehensive Survey of the Plasmodium Life Cycle by Genomic, Transcriptomic, and Proteomic Analyses , 2005, Science.

[64]  M. Berriman,et al.  Differential PfEMP1 Expression Is Associated with Cerebral Malaria Pathology , 2014, PLoS pathogens.

[65]  Peter R. Preiser,et al.  Integrated analysis of the Plasmodium species transcriptome , 2016, EBioMedicine.

[66]  F. Cohen,et al.  Expression profiling of the schizont and trophozoite stages of Plasmodium falciparum with a long-oligonucleotide microarray , 2003, Genome Biology.

[67]  V. Robert,et al.  High heterogeneity in the number of Plasmodium falciparum gametocytes in the bloodmeal of mosquitoes fed on the same host , 2000, Parasitology.

[68]  L. Rivière,et al.  Antigenic variation in Plasmodium falciparum. , 2008, Annual review of microbiology.

[69]  Huanming Yang,et al.  Full-length single-cell RNA-seq applied to a viral human cancer: applications to HPV expression and splicing analysis in HeLa S3 cells , 2015, GigaScience.

[70]  Andrew Butler,et al.  Integrated analysis of single cell transcriptomic data across conditions, technologies, and species , 2017, bioRxiv.

[71]  Ellen Bushell,et al.  A cascade of DNA binding proteins for sexual commitment and development in Plasmodium , 2014, Nature.

[72]  Yingyao Zhou,et al.  The Plasmodium falciparum sexual development transcriptome: a microarray analysis using ontology-based pattern identification. , 2005, Molecular and biochemical parasitology.

[73]  Neil Hall,et al.  Regulation of Sexual Development of Plasmodium by Translational Repression , 2006, Science.

[74]  Thomas Lengauer,et al.  Improved scoring of functional groups from gene expression data by decorrelating GO graph structure , 2006, Bioinform..

[75]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[76]  J. Marioni,et al.  Pooling across cells to normalize single-cell RNA sequencing data with many zero counts , 2016, Genome Biology.

[77]  Steven L Salzberg,et al.  HISAT: a fast spliced aligner with low memory requirements , 2015, Nature Methods.

[78]  Jacques Prudhomme,et al.  Nascent RNA sequencing reveals mechanisms of gene regulation in the human malaria parasite Plasmodium falciparum , 2017, Nucleic acids research.

[79]  A. Reid Large, rapidly evolving gene families are at the forefront of host–parasite interactions in Apicomplexa , 2014, Parasitology.