Mineralogical Features of Ore Diagenites in the Urals Massive Sulfide Deposits, Russia

In weakly metamorphosed massive sulfide deposits of the Urals (Dergamysh, Yubileynoe, Yaman-Kasy, Molodezhnoe, Valentorskoe, Aleksandrinskoe, Saf’yanovskoe), banded sulfides (ore diagenites) are recognized as the products of seafloor supergene alteration (halmyrolysis) of fine-clastic sulfide sediments and further diagenesis leading to the formation of authigenic mineralization. The ore diagenites are subdivided into pyrrhotite-, chalcopyrite-, bornite-, sphalerite-, barite- and hematite-rich types. The relative contents of sphalerite-, bornite- and barite-rich facies increases in the progression from ultramafic (=Atlantic) to bimodal mafic (=Uralian) and bimodal felsic (=Baymak and Rudny Altay) types of massive sulfide deposits. The ore diagenites have lost primary features within the ore clasts and dominantly exhibit replacement and neo-formed nodular microtextures. The evolution of the mineralogy is dependent on the original primary composition, sizes and proportions of the hydrothermal ore clasts mixed with lithic serpentinite and hyaloclastic volcanic fragments together with carbonaceous and calcareous fragments. Each type of ore diagenite is characterized by specific rare mineral assemblages: Cu–Co–Ni sulfides are common in pyrrhotite-rich diagenites; tellurides and selenides in chalcopyrite-rich diagenites; minerals of the germanite group and Cu–Ag and Cu–Sn sulfides in bornite-rich diagenites; abundant galena and sulfosalts in barite- and sphalerite-rich diagenites and diverse tellurides characterize hematite-rich diagenites. Native gold in variable amounts is typical of all types of diagenites.

[1]  J. Drever Weathering processes , 2020, Geochemical Processes, Weathering and Groundwater Recharge in Catchments.

[2]  V. Maslennikov,et al.  Microtopochemistry of pyrite nodules of siliceous siltstones from the Yubileinoe massive sulfide deposit (the Southеrn Urals): LA-IСP-MS data , 2018, LITOSFERA.

[3]  R. Large,et al.  Sulfide Breccias from the Semenov-3 Hydrothermal Field, Mid-Atlantic Ridge: Authigenic Mineral Formation and Trace Element Pattern , 2018, Minerals.

[4]  D. Heslop,et al.  Signatures of Reductive Magnetic Mineral Diagenesis From Unmixing of First‐Order Reversal Curves , 2018, Journal of Geophysical Research: Solid Earth.

[5]  V. Maslennikov,et al.  Uranium accumulation in modern and ancient Fe-oxide sediments: Examples from the Ashadze-2 hydrothermal sulfide field (Mid-Atlantic Ridge) and Yubileynoe massive sulfide deposit (South Urals, Russia) , 2018 .

[6]  V. Puchkov,et al.  Geodynamic conditions of formation of massive sulfide deposits in the Magnitogorsk Megazone, Southern Urals, and prospection criteria , 2017, Geology of Ore Deposits.

[7]  E. Belogub,et al.  Metamorphism of volcanogenic massive sulphide deposits in the Urals. Ore geology , 2017 .

[8]  R. Large,et al.  Chimneys in Paleozoic massive sulfide mounds of the Urals VMS deposits: mineral and trace element comparison with modern black, grey, white and clear smokers , 2017 .

[9]  R. Large,et al.  Se and In minerals in the submarine oxidation zone of a massive sulfide orebody of the molodezhnoe copper–zinc massive sulfide deposit, Southern Urals , 2017, Doklady Earth Sciences.

[10]  R. Taylor,et al.  Lead isotopic systematics of massive sulphide deposits in the Urals: Applications for geodynamic setting and metal sources , 2016 .

[11]  P. Nimis,et al.  Barite from the Saf’yanovka VMS deposit (Central Urals) and Semenov-1 and Semenov-3 hydrothermal sulfide fields (Mid-Atlantic Ridge): a comparative analysis of formation conditions , 2016, Mineralium Deposita.

[12]  D. Gaboury,et al.  Deciphering the Hydrothermal Evolution of a VMS System by LA-ICP-MS Using Trace Elements in Pyrite: An Example from the Bracemac-McLeod Deposits, Abitibi, Canada, and Implications for Exploration , 2015 .

[13]  V. Rusakov,et al.  Devonian ore clastic turbidites of the Molodezhnoe massive copper sulfide deposit, Southern Urals , 2015, Geochemistry International.

[14]  R. Large,et al.  Banded sulfide-magnetite ores of Mauk copper massive sulfide deposit, Central Urals: Composition and genesis , 2015, Geology of Ore Deposits.

[15]  J. Peter,et al.  Controls on the siting and style of volcanogenic massive sulphide deposits , 2015 .

[16]  S. Petersen,et al.  Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides : an in-situ LA-ICP-MS study , 2015 .

[17]  P. Nimis,et al.  Cu–(Ni–Co–Au)-bearing massive sulfide deposits associated with mafic–ultramafic rocks of the Main Urals Fault, South Urals: Geological structures, ore textural and mineralogical features, comparison with modern analogs , 2013 .

[18]  I. Seravkin Correlation between compositions of ore and host rocks in volcanogenic massive sulfide deposits of the Southern Urals , 2013, Geology of Ore Deposits.

[19]  Sven Petersen,et al.  Physical and Chemical Processes of Seafloor Mineralization at Mid‐Ocean Ridges , 2013 .

[20]  K. Haase,et al.  Trace element systematics of pyrite from submarine hydrothermal vents , 2013 .

[21]  R. Large,et al.  Tellurium-bearing minerals in zoned sulfide chimneys from Cu-Zn massive sulfide deposits of the Urals, Russia , 2013, Mineralogy and Petrology.

[22]  R. Large,et al.  Ferruginous and manganiferous haloes around massive sulphide deposits of the Urals , 2012 .

[23]  E. Belogub,et al.  Native bismuth, tsumoite, and Pb-bearing tsumoite from the Tarn’er copper-zinc massive sulfide deposit, northern Urals , 2011 .

[24]  R. Large,et al.  A Carbonaceous Sedimentary Source-Rock Model for Carlin-Type and Orogenic Gold Deposits , 2011 .

[25]  R. Berry,et al.  Pyrite and Pyrrhotite Textures and Composition in Sediments, Laminated Quartz Veins, and Reefs at Bendigo Gold Mine, Australia: Insights for Ore Genesis , 2011 .

[26]  V. Maslennikov,et al.  Sulfide minerals in the Menez Gwen nonmetallic hydrothermal field (Mid-Atlantic Ridge) , 2010 .

[27]  R. Large,et al.  Study of Trace Element Zonation in Vent Chimneys from the Silurian Yaman-Kasy Volcanic-Hosted Massive Sulfide Deposit (Southern Urals, Russia) Using Laser Ablation-Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS) , 2009 .

[28]  V. Maslennikov,et al.  Sequence of mineral formation in clastic ores of the Saf’yanovka volcanic-hosted copper massive sulfide deposit, the Central Urals , 2009 .

[29]  V. Maslennikov,et al.  Lithological-mineralogical zonality of sulfide cyclothems in the Yaman-Kasy and Saf’yanov massive sulfide deposits (Urals) , 2008 .

[30]  B. Spiro,et al.  Supergene sulphides and related minerals in the supergene profiles of VHMS deposits from the South Urals , 2008 .

[31]  N. Eremin,et al.  Rare minerals from massive sulfide ores: Typomorphic features and geochemical trend , 2007 .

[32]  N. Akinfiev,et al.  Effect of selenium on silver transport and precipitation by hydrothermal solutions: Thermodynamic description of the Ag-Se-S-Cl-O-H system , 2006 .

[33]  V. Zaykov,et al.  Silver sulfotellurides from volcanic-hosted massive sulfide deposits in the Southern Urals , 2006 .

[34]  I. Vikentyev Precious metal and telluride mineralogy of large volcanic-hosted massive sulfide deposits in the Urals , 2006 .

[35]  D. Hannington,et al.  MINERALOGY AND GEOCHEMISTRY OF A HYDROTHERMAL SILICA-SULFIDE _ SULFATE SPIRE IN THE CALDERA OF AXIAL SEAMOUNT , 2006 .

[36]  T. Stepanova,et al.  Diagenetic alterations of copper sulfides in modern ore-bearing sediments of the Logatchev-1 hydrothermal field (Mid-Atlantic Ridge 14°45′ N) , 2006 .

[37]  G. Auclair,et al.  DISTRIBUTION OF SELENIUM IN HIGH-TEMPERATURE HYDROTHERMAL SULFIDE DEPOSITS AT 130 NORTH , EAST PACIFIC RISE * , 2006 .

[38]  A. N. Kosarev,et al.  6: Classification of VMS deposits: Lessons from the South Uralides , 2005 .

[39]  R. Koski,et al.  Gold enrichment and the Bi-Au association in pyrrhotite-rich massive sulfide deposits, Escanaba trough, Southern Gorda Ridge , 2005 .

[40]  A. Galley,et al.  Volcanogenic Massive Sulfide Deposits , 2005 .

[41]  V. Maslennikov,et al.  Mineral Deposits of the Urals and Links to Geodynamic Evolution , 2005 .

[42]  R. Large,et al.  Zn-Pb-Cu volcanic-hosted massive sulphide deposits: criteria for distinguishing brine pool-type from black smoker-type sulphide deposition , 2004 .

[43]  Y. Fouquet,et al.  Subsurface processes at the lucky strike hydrothermal field, Mid-Atlantic ridge: evidence from sulfur, selenium, and iron isotopes , 2004 .

[44]  R. Taylor,et al.  Massive sulfide deposits in the south Urals: Geological setting within the framework of the Uralide orogen , 2013 .

[45]  E. Kontar Quantitative evaluation of massive sulfide ore formation , 2002 .

[46]  Dennis Brown,et al.  Mountain Building in the Uralides: Pangea to the Present , 2002 .

[47]  I. Butler,et al.  Trace element distributions in the chalcopyrite wall of a black smoker chimney: insights from laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) , 1999 .

[48]  M. Hannington,et al.  Sulfide mineralogy, geochemistry and ore genesis of the Kidd Creek deposit. Part I. The North, Central, and South Orebodies , 1999 .

[49]  V. A. Prokin,et al.  Massive copper–zinc sulphide deposits in the Urals , 1998 .

[50]  U. Knittel,et al.  Crystallography, Mineral Chemistry and Chemical Nomenclature of Goldfieldite, the Tellurian Member of the Tetrahedrite Solid-Solution Series , 1998 .

[51]  C. Little,et al.  Ancient vent chimney structures in the Silurian massive sulphides of the Urals , 1998, Geological Society, London, Special Publications.

[52]  V. N. Sazonov,et al.  Geodynamic setting of the mineral deposits of the Urals , 1997 .

[53]  J. Peter,et al.  Windy Craggy, Northwestern British Columbia The World's Largest Besshi-Type Deposit , 1997 .

[54]  C. Little,et al.  Silurian hydrothermal-vent community from the southern Urals, Russia , 1997, Nature.

[55]  Hiroshi Ohmoto,et al.  Formation of volcanogenic massive sulfide deposits: The Kuroko perspective , 1996 .

[56]  W. Goodfellow,et al.  Geology, mineralogy, and chemistry of sediment-hosted clastic massive sulfides in shallow cores, Middle Valley, northern Juan de Fuca Ridge , 1993 .

[57]  Ross R. Large,et al.  Australian volcanic-hosted massive sulfide deposits; features, styles, and genetic models , 1992 .

[58]  M. Hannington,et al.  Gold-rich sea-floor gossans in the Troodos Ophiolite and on the Mid-Atlantic Ridge , 1991 .

[59]  C. Stanley,et al.  Cervelleite, Ag4TeS, a new mineral from the Bambolla mine, Mexico, and a description of a photo-chemical reaction involving cervelleite, acanthite and hessite , 1989 .

[60]  M. Hannington,et al.  Mineralogy and geochemistry of a hydrothermal silica-sulfide-sulfate spire in the caldera of Axial Seamount, Juan De Fuca Ridge , 1988 .

[61]  W. Goodfellow,et al.  Sulfide formation and hydrothermal alteration of hemipelagic sediment in Middle Valley, northern Juan De Fuca Ridge , 1988 .

[62]  M. Hannington,et al.  Gold and native copper in supergene sulphides from the Mid-Atlantic Ridge , 1988, Nature.

[63]  Richard A. Feely,et al.  Composition and dissolution of black smoker particulates from active vents on the Juan de Fuca Ridge , 1987 .

[64]  Y. Kajiwara,et al.  Diagenetic chemical differentiation of kuroko ore deposits , 1983 .

[65]  B. Skinner,et al.  Mineral textures and their bearing on formation of the kuroko orebodies , 1983 .

[66]  J. Walshe,et al.  The formation of massive sulfide deposits on the sea floor , 1979 .

[67]  R. Fairbridge Chapter 2 Syndiagenesis-Anadiagenesis-Epidiagenesis: Phases in Lithogenesis , 1979 .

[68]  G. Chilingar,et al.  Chapter 1 Introduction-Diagenesis of Sediments and Rocks , 1979 .

[69]  G. Müller,et al.  Chapter 3 Diagenesis in Agrillaceous Sediments , 1979 .

[70]  G. Constantinou,et al.  Geology, geochemistry, and genesis of Cyprus sulfide deposits , 1973 .

[71]  B. Skinner The system Cu-Ag-S , 1966 .

[72]  K. Hummel Die Entstehung eisenreicher Gesteine durch Halmyrolyse (= submarine Gesteinszersetzung) , 1922 .