hp–Adaptive composite discontinuous Galerkin methods for elliptic problems on complicated domains

In this article, we develop the a posteriori error estimation of hp–version discontinuous Galerkin composite finite element methods for the discretization of second‐order elliptic partial differential equations. This class of methods allows for the approximation of problems posed on computational domains which may contain a huge number of local geometrical features, or microstructures. Although standard numerical methods can be devised for such problems, the computational effort may be extremely high, as the minimal number of elements needed to represent the underlying domain can be very large. In contrast, the minimal dimension of the underlying composite finite element space is independent of the number of geometric features. Computable bounds on the error measured in terms of a natural (mesh‐dependent) energy norm are derived. Numerical experiments highlighting the practical application of the proposed estimators within an automatic hp–adaptive refinement procedure will be presented. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1342–1367, 2014

[1]  Marjorie A. McClain,et al.  A Comparison of hp-Adaptive Strategies for Elliptic Partial Differential Equations , 2014, ACM Trans. Math. Softw..

[2]  Stefano Giani,et al.  Domain Decomposition Preconditioners for Discontinuous Galerkin Methods for Elliptic Problems on Complicated Domains , 2013, Journal of Scientific Computing.

[3]  Stefano Giani,et al.  hp-Version Composite Discontinuous Galerkin Methods for Elliptic Problems on Complicated Domains , 2013, SIAM J. Sci. Comput..

[4]  D. Schötzau,et al.  ENERGY NORM A POSTERIORI ERROR ESTIMATION FOR hp-ADAPTIVE DISCONTINUOUS GALERKIN METHODS FOR ELLIPTIC PROBLEMS IN THREE DIMENSIONS , 2011 .

[5]  S. Sauter,et al.  Finite element methods for the Stokes problem on complicated domains , 2011 .

[6]  D. Schötzau,et al.  A robust a posteriori error estimate for hp-adaptive DG methods for convection–diffusion equations , 2011 .

[7]  Thomas P. Wihler,et al.  An hp-adaptive strategy based on continuous Sobolev embeddings , 2011, J. Comput. Appl. Math..

[8]  R. Hartmann Numerical Analysis of Higher Order Discontinuous Galerkin Finite Element methods , 2008 .

[9]  Daniel Peterseim,et al.  The Composite Mini Element - Coarse Mesh Computation of Stokes Flows on Complicated Domains , 2008, SIAM J. Numer. Anal..

[10]  E. Süli,et al.  A posteriori error analysis of hp-version discontinuous Galerkin finite-element methods for second-order quasi-linear elliptic PDEs , 2007 .

[11]  J. Melenk,et al.  An adaptive strategy for hp-FEM based on testing for analyticity , 2007 .

[12]  D. Schötzau,et al.  ENERGY NORM A POSTERIORI ERROR ESTIMATION OF hp-ADAPTIVE DISCONTINUOUS GALERKIN METHODS FOR ELLIPTIC PROBLEMS , 2007 .

[13]  D. Schötzau,et al.  An hp-adaptive mixed discontinuous Galerkin FEM for nearly incompressible linear elasticity , 2006 .

[14]  Patrick Amestoy,et al.  Hybrid scheduling for the parallel solution of linear systems , 2006, Parallel Comput..

[15]  Stefan A. Sauter,et al.  Two-scale composite finite element method for Dirichlet problems on complicated domains , 2006, Numerische Mathematik.

[16]  E. Süli,et al.  A note on the design of hp-adaptive finite element methods for elliptic partial differential equations , 2005 .

[17]  Paul Houston,et al.  Energy Norm shape A Posteriori Error Estimation for Mixed Discontinuous Galerkin Approximations of the Stokes Problem , 2005, J. Sci. Comput..

[18]  Ilaria Perugia,et al.  Mixed discontinuous Galerkin approximation of the Maxwell operator: The indefinite case , 2005 .

[19]  P. Frauenfelder,et al.  Exponential convergence of the hp-DGFEM for diffusion problems , 2003 .

[20]  Ohannes A. Karakashian,et al.  A Posteriori Error Estimates for a Discontinuous Galerkin Approximation of Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..

[21]  D. Schötzau,et al.  Energy norm a posteriori error estimation for mixed discontinuous Galerkin approximations of the Stokes problem , 2003 .

[22]  C. Schwab,et al.  A finite volume discontinuous Galerkin scheme¶for nonlinear convection–diffusion problems , 2002 .

[23]  Barbara I. Wohlmuth,et al.  On residual-based a posteriori error estimation in hp-FEM , 2001, Adv. Comput. Math..

[24]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[25]  S. Sauter,et al.  Extension operators and approximation on domains containing small geometric details , 1999 .

[26]  Patrick R. Amestoy,et al.  Multifrontal parallel distributed symmetric and unsymmetric solvers , 2000 .

[27]  W. Hackbusch,et al.  Composite finite elements for problems containing small geometric details , 1997 .

[28]  W. Hackbusch,et al.  Composite finite elements for the approximation of PDEs on domains with complicated micro-structures , 1997 .

[29]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[30]  E. Stein Singular Integrals and Differentiability Properties of Functions (PMS-30), Volume 30 , 1971 .