Walk 'n' Merge: A Scalable Algorithm for Boolean Tensor Factorization
暂无分享,去创建一个
[1] J. Rissanen,et al. Modeling By Shortest Data Description* , 1978, Autom..
[2] Pauli Miettinen,et al. Discovering facts with boolean tensor tucker decomposition , 2013, CIKM.
[3] Pauli Miettinen,et al. Scalable Boolean Tensor Factorizations using Random Walks , 2013, ArXiv.
[4] L. Tucker,et al. Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.
[5] Tamara G. Kolda,et al. On Tensors, Sparsity, and Nonnegative Factorizations , 2011, SIAM J. Matrix Anal. Appl..
[6] Krishna P. Gummadi,et al. On the evolution of user interaction in Facebook , 2009, WOSN '09.
[7] Iven Van Mechelen,et al. Indclas: A three-way hierarchical classes model , 1999 .
[8] Jean-François Boulicaut,et al. Closed patterns meet n-ary relations , 2009, TKDD.
[9] Richard A. Harshman,et al. Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .
[10] Seungjin Choi,et al. Nonnegative Tucker Decomposition , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.
[11] Pauli Miettinen,et al. Boolean Tensor Factorizations , 2011, 2011 IEEE 11th International Conference on Data Mining.
[12] Pauli Miettinen,et al. The Discrete Basis Problem , 2006, IEEE Transactions on Knowledge and Data Engineering.
[13] Nikos D. Sidiropoulos,et al. ParCube: Sparse Parallelizable Tensor Decompositions , 2012, ECML/PKDD.
[14] Tamir Hazan,et al. Non-negative tensor factorization with applications to statistics and computer vision , 2005, ICML.
[15] J. Chang,et al. Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .
[16] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[17] Pauli Miettinen,et al. MDL4BMF: Minimum Description Length for Boolean Matrix Factorization , 2014, TKDD.
[18] Cynthia Vera Glodeanu,et al. Optimal Factorization of Three-Way Binary Data Using Triadic Concepts , 2013, Order.