The Horn conjecture for sums of compact selfadjoint operators
暂无分享,去创建一个
[1] Terence Tao,et al. The honeycomb model of GL(n) tensor products I: proof of the saturation conjecture , 1998, math/9807160.
[2] A. Klyachko. Stable bundles, representation theory and Hermitian operators , 1998 .
[3] Anders S. Buch. The saturation conjecture (after A. Knutson and T. Tao) , 1998 .
[4] W. Fulton. Eigenvalues of sums of hermitian matrices , 1998 .
[5] W. Fulton. Eigenvalues, invariant factors, highest weights, and Schubert calculus , 1999, math/9908012.
[6] T. Tao,et al. The honeycomb model of _{}(ℂ) tensor products I: Proof of the saturation conjecture , 1999 .
[7] Eigenvalues of majorized Hermitian matrices and Littlewood–Richardson coefficients , 2000, math/0209240.
[8] S. Friedland. Finite and infinite dimensional generalizations of Klyachko's theorem , 2000 .
[9] Prakash Belkale,et al. Local Systems on P1 - S for S a Finite Set , 2001, Compositio Mathematica.
[10] T. Tao,et al. The honeycomb model of _{}(ℂ) tensor products II: Puzzles determine facets of the Littlewood-Richardson cone , 2001, math/0107011.
[11] A. Buch. Eigenvalues of Hermitian matrices with positive sum of bounded rank , 2004, math/0411063.
[12] Thomas D. Smotzer,et al. CONTINUOUS VERSIONS OF THE LITTLEWOOD-RICHARDSON RULE, SELFADJOINT OPERATORS, AND INVARIANT SUBSPACES , 2005 .
[13] T. Tao,et al. THE SATURATION CONJECTURE (AFTER A. KNUTSON , 2006 .