Deforming meshes that split and merge

We present a method for accurately tracking the moving surface of deformable materials in a manner that gracefully handles topological changes. We employ a Lagrangian surface tracking method, and we use a triangle mesh for our surface representation so that fine features can be retained. We make topological changes to the mesh by first identifying merging or splitting events at a particular grid resolution, and then locally creating new pieces of the mesh in the affected cells using a standard isosurface creation method. We stitch the new, topologically simplified portion of the mesh to the rest of the mesh at the cell boundaries. Our method detects and treats topological events with an emphasis on the preservation of detailed features, while simultaneously simplifying those portions of the material that are not visible. Our surface tracker is not tied to a particular method for simulating deformable materials. In particular, we show results from two significantly different simulators: a Lagrangian FEM simulator with tetrahedral elements, and an Eulerian grid-based fluid simulator. Although our surface tracking method is generic, it is particularly well-suited for simulations that exhibit fine surface details and numerous topological events. Highlights of our results include merging of viscoplastic materials with complex geometry, a taffy-pulling animation with many fold and merge events, and stretching and slicing of stiff plastic material.

[1]  Ian M. Mitchell,et al.  A hybrid particle level set method for improved interface capturing , 2002 .

[2]  Demetri Terzopoulos,et al.  Deformable models , 2000, The Visual Computer.

[3]  Robert Bridson,et al.  Fluid Simulation for Computer Graphics , 2008 .

[4]  Ignacio Llamas,et al.  Simulation of bubbles in foam with the volume control method , 2007, SIGGRAPH 2007.

[5]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[6]  Adam W. Bargteil A semi-Lagrangian contouring method for fluid simulation , 2005, SIGGRAPH '05.

[7]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[8]  Demetri Terzopoulos,et al.  T-snakes: Topology adaptive snakes , 2000, Medical Image Anal..

[9]  Markus H. Gross,et al.  Meshless deformations based on shape matching , 2005, ACM Trans. Graph..

[10]  Tyson Brochu,et al.  Fluid animation with explicit surface meshes and boundary-only dynamics , 2006 .

[11]  Jacques-Olivier Lachaud,et al.  Deformable model with a complexity independent from image resolution , 2005, Comput. Vis. Image Underst..

[12]  Ronald Fedkiw,et al.  An Unconditionally Stable MacCormack Method , 2008, J. Sci. Comput..

[13]  Longin Jan Latecki,et al.  Digital Topology , 1994 .

[14]  J. Sethian,et al.  A Fast Level Set Method for Propagating Interfaces , 1995 .

[15]  J. Strain A Fast Semi-Lagrangian Contouring Method for Moving Interfaces , 2001 .

[16]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[17]  Ronald Fedkiw,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Hybrid Simulation of Deformable Solids , 2022 .

[18]  James F. O'Brien,et al.  A method for animating viscoelastic fluids , 2004, ACM Trans. Graph..

[19]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[20]  Ronald Fedkiw,et al.  Multiple interacting liquids , 2006, ACM Trans. Graph..

[21]  Yongning Zhu,et al.  Animating sand as a fluid , 2005, SIGGRAPH 2005.

[22]  Dimitris N. Metaxas,et al.  Textured Liquids based on the Marker Level Set , 2007, Comput. Graph. Forum.

[23]  Ronald Fedkiw,et al.  Practical animation of liquids , 2001, SIGGRAPH.

[24]  Leif Kobbelt,et al.  Structure Preserving CAD Model Repair , 2005, Comput. Graph. Forum.

[25]  Xiangmin Jiao,et al.  Face offsetting: A unified approach for explicit moving interfaces , 2007, J. Comput. Phys..

[26]  Dinesh Manocha,et al.  Topology preserving surface extraction using adaptive subdivision , 2004, SGP '04.

[27]  Markus H. Gross,et al.  Wavelet turbulence for fluid simulation , 2008, ACM Trans. Graph..

[28]  Markus H. Gross,et al.  Particle-based fluid simulation for interactive applications , 2003, SCA '03.

[29]  Jean-Philippe Pons,et al.  Delaunay Deformable Models: Topology-Adaptive Meshes Based on the Restricted Delaunay Triangulation , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[30]  Leif Kobbelt,et al.  Sub‐Voxel Topology Control for Level‐Set Surfaces , 2003, Comput. Graph. Forum.

[31]  Ulrich Rüde,et al.  Free Surface Lattice-Boltzmann fluid simulations with and without level sets , 2004, VMV.

[32]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[33]  G. Turk,et al.  Fast viscoelastic behavior with thin features , 2008, SIGGRAPH 2008.

[34]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[35]  Chang-Hun Kim,et al.  Discontinuous fluids , 2005, ACM Trans. Graph..

[36]  Lingling Wu,et al.  A simple package for front tracking , 2006, J. Comput. Phys..

[37]  Robert Bridson,et al.  A fast variational framework for accurate solid-fluid coupling , 2007, SIGGRAPH 2007.

[38]  Markus H. Gross,et al.  Eurographics Symposium on Point-based Graphics (2005) a Unified Lagrangian Approach to Solid-fluid Animation , 2022 .

[39]  Greg Turk,et al.  A finite element method for animating large viscoplastic flow , 2007, SIGGRAPH 2007.

[40]  L. Guibas,et al.  Meshless animation of fracturing solids , 2005, ACM Trans. Graph..

[41]  Ronald Fedkiw,et al.  Volume conserving finite element simulations of deformable models , 2007, ACM Trans. Graph..

[42]  Jessica K. Hodgins,et al.  Graphical modeling and animation of brittle fracture , 1999, SIGGRAPH.

[43]  Qiang Zhang,et al.  Three-Dimensional Front Tracking , 1998, SIAM J. Sci. Comput..

[44]  Thomas Martin Deserno,et al.  A General Discrete Contour Model in Two, Three, and Four Dimensions for Topology-Adaptive Multichannel Segmentation , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  John Platt,et al.  Heating and melting deformable models (from goop to glop) , 1989 .

[46]  Gavin S. P. Miller,et al.  Rapid, stable fluid dynamics for computer graphics , 1990, SIGGRAPH.

[47]  M. Sussman A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles , 2003 .

[48]  E. Guendelman,et al.  Coupling water and smoke to thin deformable and rigid shells , 2005, SIGGRAPH 2005.

[49]  Greg Turk,et al.  Interior/exterior classification of polygonal models , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[50]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[51]  Andrew Lewis,et al.  Model reduction for real-time fluids , 2006, SIGGRAPH '06.

[52]  Leonidas J. Guibas,et al.  Adaptively sampled particle fluids , 2007, ACM Trans. Graph..

[53]  Ronald Fedkiw,et al.  Animation and rendering of complex water surfaces , 2002, ACM Trans. Graph..

[54]  P. Koumoutsakos,et al.  A Lagrangian particle level set method. , 2005 .

[55]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .