COMPUTER-ASSISTED STRUCTURE ELUCIDATION

[1]  J. Dubois,et al.  The darcpluridata system: the 13C-n.m.r. data bank , 1979 .

[2]  D. Henneberg,et al.  Optimization of search algorithms for a mass spectra library , 1983 .

[3]  D. Henneberg,et al.  A correlation method in library search , 1984 .

[4]  B. Weimann,et al.  Computer-aided identification of compounds by comparison of mass spectra , 1984 .

[5]  J. Dubois,et al.  Computer-aided elucidation of structures by carbon-13 nuclear magnetic resonance The DARC-EPIOS Method: Characterization of Ordered Substructures by Correlating the Chemical Shifts of Their Bonded Carbon Atoms , 1984 .

[6]  Yoshihiro Kudo,et al.  Structure elucidation system using structural information from multisources: CHEMICS , 1985, J. Chem. Inf. Comput. Sci..

[7]  C. W. v. d. Lieth,et al.  13C NMR data bank techniques as analytical tools , 1985 .

[8]  M. Farkas,et al.  Computer-assisted chemical structure analysis , 1986 .

[9]  J. Seil,et al.  Interpretation of infrared spectra based on statistical approaches , 1986 .

[10]  S. Lowry,et al.  Self-training, self-optimizing expert system for interpretation of the infrared spectra of environmental mixtures. , 1987, Analytical chemistry.

[11]  T. Förster,et al.  SPEKTREN II — a structurally oriented spectroscopic information system , 1987 .

[12]  M. Razinger,et al.  Expert system for solving problems in carbon-13 nuclear magnetic resonance spectroscopy , 1987 .

[13]  Jacques-Emile Dubois,et al.  DARC system: notions of defined and generic substructures. Filiation and coding of FREL substructure (SS) classes , 1987, J. Chem. Inf. Comput. Sci..

[14]  Wolfgang Bremser,et al.  Structure Elucidation and Artificial Intelligence , 1988 .

[15]  Bradley D. Christie,et al.  Structure generation by reduction: a new strategy for computer-assisted structure elucidation , 1988, J. Chem. Inf. Comput. Sci..

[16]  Kimito Funatsu,et al.  Further development of structure generation in the automated structure elucidation system CHEMICS , 1988, J. Chem. Inf. Comput. Sci..

[17]  E. Feigenbaum,et al.  On gray's interpretation of the dendral project and programs: Myth or mythunderstanding? , 1988 .

[18]  Kimito Funatsu,et al.  Introduction of two-dimensional NMR spectral information to an automated structure elucidation system, CHEMICS. Utilization of 2D-INADEQUATE information , 1989, J. Chem. Inf. Comput. Sci..

[19]  H. Luinge,et al.  Artificial intelligence for the interpretation of combined spectral data : Design and development of a spectrum interpreter , 1989 .

[20]  K. Varmuza,et al.  Computer‐aided interpretation of mass spectra by a combination of library search with principal component analysis , 1990 .

[21]  W. Bremser,et al.  SpecInfo—A multidimensional spectroscopic interpretation system , 1991 .

[22]  Simona Bohanec,et al.  Structure generation of constitutional isomers from structural fragments , 1991, J. Chem. Inf. Comput. Sci..

[23]  M. Munk,et al.  Neural network models for infrared spectrum interpretation , 1991 .

[24]  M. Munk,et al.  The role of two-dimensional nuclear magnetic resonance spectroscopy in computer-enhanced structure elucidation , 1991 .

[25]  Steven P. Levine,et al.  Computer-assisted infrared identification of vapor-phase mixture components , 1991, J. Chem. Inf. Comput. Sci..

[26]  H. Lohninger,et al.  Comparing the performance of neural networks to well-established methods of multivariate data analysis: the classification of mass spectral data , 1992 .

[27]  Z. Hippe,et al.  Integrated expert system SCANNET for storage and retrieval of spectral data in analytical chemistry. , 1992 .

[28]  Lawrence S. Anker,et al.  Prediciton of carbon-13 nuclear magnetic resonance chemical shifts by artificial neural networks , 1992 .

[29]  Morton E. Munk,et al.  C13Shift: a computer program for the prediction of carbon-13 NMR spectra based on an open set of additivity rules , 1992, J. Chem. Inf. Comput. Sci..

[30]  Jiri Pospichal,et al.  Application of recurrent neural networks in chemistry. Prediction and classification of carbon-13 NMR chemical shifts in a series of monosubstituted benzenes , 1992, J. Chem. Inf. Comput. Sci..

[31]  T. Blaffert “Superatoms” in the interpretation of spectra , 1992 .

[32]  Gary W. Small Database retrieval techniques for carbon-13 nuclear magnetic resonance spectrum simulation , 1992, J. Chem. Inf. Comput. Sci..

[33]  William Lingran Chen,et al.  MCSS: a new algorithm for perception of maximal common substructures and its application to NMR spectral studies. 1. The algorithm , 1992, J. Chem. Inf. Comput. Sci..

[34]  M. Meyer,et al.  Interpretation of infrared spectra by artificial neural networks , 1992 .

[35]  Ernö Pretsch,et al.  SpecTool: a hypermedia toolkit for structure elucidation , 1992, J. Chem. Inf. Comput. Sci..

[36]  Ernö Pretsch,et al.  SpecTool: a knowledge-based hypermedia system for interpreting molecular spectra , 1992 .

[37]  B. Debska SCANNET: a spectroscopy database , 1992 .

[38]  William Lingran Chen,et al.  MCSS: a new algorithm for perception of maximal common substructures and its application to NMR spectral studies. 2. Applications , 1992, J. Chem. Inf. Comput. Sci..

[39]  Rainer Herges,et al.  Automatic interpretation of infrared spectra: recognition of aromatic substitution patterns using neural networks , 1992, J. Chem. Inf. Comput. Sci..

[40]  Andreas Barth,et al.  SpecInfo: An integrated spectroscopic information system , 1993, J. Chem. Inf. Comput. Sci..

[41]  Jon W. Ball,et al.  Automated selection of regression models using neural networks for carbon-13 NMR spectral predictions , 1993 .

[42]  Jean-Pierre Doucet,et al.  Topological approach of carbon-13 NMR spectral simulation: Application to fuzzy substructures , 1993, J. Chem. Inf. Comput. Sci..