Genome-wide adaptive complexes to underground stresses in blind mole rats Spalax

Wei Zhao | Xiangke Liao | Shaoliang Peng | Gideon Rechavi | Anders Krogh | Jun Wang | Eviatar Nevo | Yue Feng | Alla Fishman | Shuaicheng Li | Thomas Hankeln | Derek E Wildman | Xiaodong Fang | Angela Kranz | Lu Zhang | Xiaoqian Zhu | Noa Sher | Erez Y Levanon | Mark Band | Harris A Lewin | Andrei Seluanov | Vera Gorbunova | Leonid Brodsky | Xin Zhou | Sergey Feranchuk | Jian Ma | Sanyang Liu | A. Krogh | Yao Lu | X. Fang | D. Wildman | L. Brodsky | S. Feranchuk | Jing Zhao | E. Nevo | Xin Zhou | E. Levanon | H. Lewin | Noa Sher | Xiangke Liao | Xiaoqian Zhu | Shaoliang Peng | D. Larkin | Jaebum Kim | Jian Ma | A. Avivi | G. Rechavi | A. Gudkov | A. Seluanov | V. Gorbunova | M. Band | T. Hankeln | M. McGowen | Shuaicheng Li | Lily Bazak | Binyamin A. Knisbacher | A. Bicker | M. Farré | Xuanting Jiang | Z. Xiong | Jun Wang | Eshel Ben Jacob | A. Fishman | Jing Zhao | Zhiyong Huang | Q. Zheng | Yingqi Xiong | Lijuan Han | Yabing Zhu | J. Azpurua | Yue Feng | Zhiqiang Xiong | Yabing Zhu | Zhiyong Huang | Xuanting Jiang | Qiumei Zheng | Jing Zhao | Jie Chen | Jaebum Kim | Eshel Ben Jacob | Lily Bazak | Binyamin A Knisbacher | Jorge Azpurua | Marta Farré | Hanno Schmidt | Michael R McGowen | Anne Bicker | Aaron Avivi | Lijuan Han | Denis Larkin | Yingqi Xiong | Andrei Gudkov | Yao Lu | Imad Shams | Krzysztof Gajda | Tobias Mattheus | Hanno Schmidt | Kexin Li | Lu Zhang | Wei Zhao | Sanyang Liu | I. Shams | K. Gajda | Angela Kranz | Tobias Mattheus | Kexin Li | Jie Chen | B. Knisbacher | E. Ben Jacob | H. Schmidt

[1]  A. Avivi,et al.  Pronounced cancer resistance in a subterranean rodent, the blind mole-rat, Spalax: in vivo and in vitroevidence , 2013, BMC Biology.

[2]  A. Serafino,et al.  Increased expression and copy number amplification of LINE-1 and SINE B1 retrotransposable elements in murine mammary carcinoma progression , 2013, Oncotarget.

[3]  A. Avivi,et al.  Transcription pattern of p53-targeted DNA repair genes in the hypoxia-tolerant subterranean mole rat Spalax. , 2013, Journal of molecular biology.

[4]  Loretta Auvil,et al.  Reference-assisted chromosome assembly , 2013, Proceedings of the National Academy of Sciences.

[5]  A. Gudkov,et al.  p53 cooperates with DNA methylation and a suicidal interferon response to maintain epigenetic silencing of repeats and noncoding RNAs , 2012, Proceedings of the National Academy of Sciences.

[6]  M. Gassmann,et al.  Cross talk between S-nitrosylation and S-glutathionylation in control of the Na,K-ATPase regulation in hypoxic heart. , 2012, American journal of physiology. Heart and circulatory physiology.

[7]  A. Avivi,et al.  Transcriptome analysis of the spalax hypoxia survival response includes suppression of apoptosis and tight control of angiogenesis , 2012, BMC Genomics.

[8]  E. Nevo,et al.  Cancer resistance in the blind mole rat is mediated by concerted necrotic cell death mechanism , 2012, Proceedings of the National Academy of Sciences.

[9]  Hypoxia associated NMDA receptor 2 subunit composition: developmental comparison between the hypoxia-tolerant subterranean mole-rat, Spalax, and the hypoxia-sensitive rat , 2012, Journal of Comparative Physiology B.

[10]  Richard Durbin,et al.  High levels of RNA-editing site conservation amongst 15 laboratory mouse strains , 2012, Genome Biology.

[11]  A. Avivi,et al.  Methionine sulfoxide reductases and methionine sulfoxide in the subterranean mole rat (Spalax): characterization of expression under various oxygen conditions. , 2012, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[12]  R. Weber,et al.  Oxygenation properties and oxidation rates of mouse hemoglobins that differ in reactive cysteine content. , 2012, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[13]  Gary R Lewin,et al.  The Molecular Basis of Acid Insensitivity in the African Naked Mole-Rat , 2011, Science.

[14]  G. Church,et al.  Large-scale DNA editing of retrotransposons accelerates mammalian genome evolution. , 2011, Nature communications.

[15]  T. J. Robinson,et al.  Impacts of the Cretaceous Terrestrial Revolution and KPg Extinction on Mammal Diversification , 2011, Science.

[16]  L. Peshkin,et al.  Genome sequencing reveals insights into physiology and longevity of the naked mole rat , 2011, Nature.

[17]  E. Nevo Evolution Under Environmental Stress at Macro- and Microscales , 2011, Genome biology and evolution.

[18]  Alvaro G. Hernandez,et al.  Transcriptome Sequencing of the Blind Subterranean Mole Rat, Spalax galili: Utility and Potential for the Discovery of Novel Evolutionary Patterns , 2011, PloS one.

[19]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[20]  E. Nevo,et al.  Neuroglobin, cytoglobin, and myoglobin contribute to hypoxia adaptation of the subterranean mole rat Spalax , 2010, Proceedings of the National Academy of Sciences.

[21]  O. Ashur-Fabian,et al.  The expression of p53-target genes in the hypoxia-tolerant subterranean mole-rat is hypoxia-dependent and similar to expression patterns in solid tumors , 2010, Cell cycle.

[22]  A. Avivi,et al.  Antioxidant responses to variations of oxygen by the Harderian gland of different species of the superspecies Spalax ehrenbergi , 2010 .

[23]  Miriah D. Meyer,et al.  Genome-wide synteny through highly sensitive sequence alignment: Satsuma , 2010, Bioinform..

[24]  S. Pimlott,et al.  SSRI antidepressants do not confound single photon emission computed tomography (SPECT) imaging studies using the α4β2 nicotinic acetylcholine receptor [123I]5‐I‐A85380 ligand: In vivo and in vitro evidence , 2010, Synapse.

[25]  Huanming Yang,et al.  De novo assembly of human genomes with massively parallel short read sequencing. , 2010, Genome research.

[26]  Dawei Li,et al.  The sequence and de novo assembly of the giant panda genome , 2010, Nature.

[27]  S. Sinha,et al.  Aberrant methylation and associated transcriptional mobilization of Alu elements contributes to genomic instability in hypoxia , 2009, Journal of cellular and molecular medicine.

[28]  R. Coleman,et al.  Adaptive features of skeletal muscles of mole rats (Spalax ehrenbergi) to intensive activity under subterranean hypoxic conditions. , 2009, Acta histochemica.

[29]  A. Avivi,et al.  Hypoxia‐induced BNIP3 expression and mitophagy: in vivo comparison of the rat and the hypoxia‐tolerant mole rat, Spalax ehrenbergi , 2009, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[30]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[31]  E. Nevo,et al.  Brain size diversity in adaptation and speciation of subterranean mole rats , 2009 .

[32]  K. Becker,et al.  VEGF-B is dispensable for blood vessel growth but critical for their survival, and VEGF-B targeting inhibits pathological angiogenesis , 2009, Proceedings of the National Academy of Sciences.

[33]  A. Avivi,et al.  The Muscle Ankyrin Repeat Proteins Are Hypoxia-Sensitive: In Vivo mRNA Expression in the Hypoxia-Tolerant Blind Subterranean Mole Rat, Spalax ehrenbergi , 2009, Journal of Molecular Evolution.

[34]  Andrew G Smith,et al.  B2 SINE retrotransposon causes polymorphic expression of mouse 5-aminolevulinic acid synthase 1 gene. , 2008, Biochemical and biophysical research communications.

[35]  J. Cross,et al.  The evolution, regulation, and function of placenta-specific genes. , 2008, Annual review of cell and developmental biology.

[36]  A. Avivi,et al.  Cloning and in vivo expression of vascular endothelial growth factor receptor 2 (Flkl) in the naturally hypoxia‐tolerant subterranean mole rat , 2008, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[37]  E. Reischl,et al.  Distribution, adaptation and physiological meaning of thiols from vertebrate hemoglobins. , 2007, Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.

[38]  Eli Eisenberg,et al.  RNA editing level in the mouse is determined by the genomic repeat repertoire. , 2006, RNA.

[39]  L. Brodsky,et al.  Differential expression profiling of the blind subterranean mole rat Spalax ehrenbergi superspecies: bioprospecting for hypoxia tolerance. , 2006, Physiological genomics.

[40]  Eviatar Nevo,et al.  Oxygen and carbon dioxide fluctuations in burrows of subterranean blind mole rats indicate tolerance to hypoxic-hypercapnic stresses. , 2005, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[41]  E. Nevo,et al.  p53: A Key Player in Tumoral and Evolutionary Adaptation: A Lesson from the Israeli Blind Subterranean Mole Rat , 2005, Cell cycle.

[42]  T. Heidmann,et al.  APOBEC3G cytidine deaminase inhibits retrotransposition of endogenous retroviruses , 2005, Nature.

[43]  R. Sorek,et al.  Is abundant A-to-I RNA editing primate-specific? , 2004, Trends in genetics : TIG.

[44]  E. Nevo,et al.  Hematocrit and hemoglobin concentration in four chromosomal species and some isolated populations of actively speciating subterranean mole rats in Israel , 1986, Experientia.

[45]  E. Nevo,et al.  Adaptive heart and breathing frequencies in 4 ecologically differentiating chromosomal species of mole rats in Israel , 1986, Experientia.

[46]  E. Nevo,et al.  Adaptive respiratory variation in 4 chromosomal species of mole rats , 1984, Experientia.

[47]  J. Goodrich,et al.  The SINE-encoded mouse B2 RNA represses mRNA transcription in response to heat shock , 2004, Nature Structural &Molecular Biology.

[48]  Gideon Rechavi,et al.  Evolution of p53 in hypoxia-stressed Spalax mimics human tumor mutation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Celso A. Espinoza,et al.  B2 RNA binds directly to RNA polymerase II to repress transcript synthesis , 2004, Nature Structural &Molecular Biology.

[50]  E. Nevo,et al.  Hypoxic stress tolerance of the blind subterranean mole rat: expression of erythropoietin and hypoxia-inducible factor 1 alpha. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[51]  R. König,et al.  Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome , 2004, Nature Structural &Molecular Biology.

[52]  F. Sharp,et al.  Cloning and expression of short interspersed elements B1 and B2 in ischemic brain , 2004, The European journal of neuroscience.

[53]  E. Nevo,et al.  Circadian Genes in a Blind Subterranean Mammal III: Molecular Cloning and Circadian Regulation of Cryptochrome Genes in the Blind Subterranean Mole Rat, Spalax Ehrenbergi Superspecies , 2004, Journal of biological rhythms.

[54]  Y. Edoute,et al.  Evidence for improved myocardial oxygen delivery and function during hypoxia in the mole rat , 2004, Journal of Comparative Physiology B.

[55]  E. Nevo,et al.  Circadian genes in a blind subterranean mammal II: Conservation and uniqueness of the three Period homologs in the blind subterranean mole rat, Spalax ehrenbergi superspecies , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[56]  M. Stanhope,et al.  Rodent phylogeny and a timescale for the evolution of Glires: evidence from an extensive taxon sampling using three nuclear genes. , 2002, Molecular biology and evolution.

[57]  E. Nevo,et al.  Adaptive evolution of small heat shock protein/ αB-crystallin promoter activity of the blind subterranean mole rat, Spalax ehrenbergi , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[58]  E. Nevo,et al.  Biological clock in total darkness: The Clock/MOP3 circadian system of the blind subterranean mole rat , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[59]  E. Nevo,et al.  Adaptive radiation of blind subterranean mole rats : naming and revisiting the four sibling species of the Spalax ehrenbergi superspecies in Israel: Spalax galili ( 2n=52), S. golani (2n=54), S. carmeli (2n=58), and S. judaei (2n=60) , 2001 .

[60]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.

[61]  C. G. Faulkes Mosaic Evolution of Subterranean Mammals — Regression, Progression and Global Convergence , 2000, Heredity.

[62]  E. Nevo Mosaic Evolution of Subterranean Mammals: Regression, Progression, and Global Convergence , 1999 .

[63]  D. Zimonjic,et al.  Assignment of the GDNF family receptor alpha-1 (GFRA1) to human chromosome band 10q26 by in situ hybridization. , 1997, Cytogenetics and cell genetics.

[64]  C. R. Taylor,et al.  Working underground: respiratory adaptations in the blind mole rat. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[65]  M. D. Mann,et al.  Size of somatosensory cortex and of somatosensory thalamic nuclei of the naturally blind mole rat, Spalax ehrenbergi. , 1997, Journal fur Hirnforschung.

[66]  G. Rehkämper,et al.  Brain structure volumes in the mole rat, Spalax ehrenbergi (Spalacidae, Rodentia) in comparison to the rat and subterrestrial insectivores. , 1997, Journal fur Hirnforschung.

[67]  E. Nevo,et al.  Functional anatomy of the thalamus in the blind mole rat Spalax ehrenbergi: An architectonic and electrophysiologically controlled tracing study , 1994, The Journal of comparative neurology.

[68]  Eviatar Nevo,et al.  Ocular regression conceals adaptive progression of the visual system in a blind subterranean mammal , 1993, Nature.

[69]  E Nevo,et al.  Seismic communication in a blind subterranean mammal: a major somatosensory mechanism in adaptive evolution underground. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[70]  E. Nevo,et al.  Brain organization and evolution in subterranean mole rats , 2009 .

[71]  E. Nevo,et al.  Photoperiod perception in the blind mole rat (Spalax ehrenbergi, Nehring): involvement of the Harderian gland, atrophied eyes, and melatonin. , 1984, The Journal of experimental zoology.

[72]  R. Arieli,et al.  Blood Capillary Density in Heart and Skeletal Muscles of the Fossorial Mole Rat , 1981, Physiological Zoology.