Fast as-isometric-as-possible shape interpolation

Shape interpolation, as a bridge communicating static geometries and dynamic shape sequences, is a fundamental operation in digital geometry processing and computer animation. We propose a fast as-isometric-as-possible (AIAP) 3D mesh interpolation approach which casts the shape interpolation problem to finding an AIAP motion trajectory from the start shape to the end shape. This leads to a nonlinear optimization problem with all intermediate shapes as unknowns. The block-coordinate descent method is then employed to iteratively solve the optimization. In each iteration, we need to solve two linear equations whose dimensionality can further be reduced based on a decoupling strategy. Connection maps between orthogonal frames of adjacent edges are further introduced for producing an initial shape sequence in order to address the large-scale deformation problem. A propagation-optimization strategy is then presented to quickly reconstruct the orthogonal frames of all edges from connection maps as well as the orthogonal frame of a specified edge. Refinement of edge quality is available in our method due to the AIAP iterative procedure. In the end, a shape manipulation framework is established for shape sequence transfer and shape sequence editing. Graphical abstractLinear VS. AIAPDisplay Omitted HighlightsWe propose a 3D as-isometric-as-possible shape interpolation method.We efficiently address the AIAP optimization using a block-coordinate descent scheme.A propagation-based initialization method is proposed via connection maps.Our initialization can easily be transplanted to other shape interpolation methods.Our method outperforms state-of-the-art interpolation methods in efficiency or quality.

[1]  Min Meng,et al.  Sketching Image Morphing Using Moving Least Squares , 2007 .

[2]  P. Schröder,et al.  Conformal equivalence of triangle meshes , 2008, SIGGRAPH 2008.

[3]  Liang Yang,et al.  Planar shape interpolation using relative velocity fields , 2013, Comput. Graph..

[4]  Taku Komura,et al.  Manipulation of Flexible Objects by Geodesic Control , 2012, Comput. Graph. Forum.

[5]  Jaeil Choi,et al.  On Coherent Rotation Angles for As-Rigid-As-Possible Shape Interpolation , 2003, CCCG.

[6]  Jovan Popović,et al.  Semantic deformation transfer , 2009, SIGGRAPH 2009.

[7]  Thomas J. Cashman,et al.  Efficient Interpolation of Articulated Shapes Using Mixed Shape Spaces , 2013, Comput. Graph. Forum.

[8]  Jarek Rossignac,et al.  Steady affine motions and morphs , 2011, TOGS.

[9]  D. Sontag 1 Introduction to Dual Decomposition for Inference , 2010 .

[10]  Thomas W. Sederberg,et al.  A physically based approach to 2–D shape blending , 1992, SIGGRAPH.

[11]  Charlie C. L. Wang,et al.  Efficient Optimization of Common Base Domains for Cross Parameterization , 2012, IEEE Transactions on Visualization and Computer Graphics.

[12]  Xun Wang,et al.  Structure Preserving Manipulation and Interpolation for Multi‐element 2D Shapes , 2012, Comput. Graph. Forum.

[13]  Jovan Popovic,et al.  Deformation transfer for triangle meshes , 2004, ACM Trans. Graph..

[14]  Hujun Bao,et al.  Poisson shape interpolation , 2006, Graph. Model..

[15]  D. Levin,et al.  Linear rotation-invariant coordinates for meshes , 2005, SIGGRAPH 2005.

[16]  William V. Baxter,et al.  Rigid shape interpolation using normal equations , 2008, NPAR.

[17]  Richard Szeliski,et al.  Building Rome in a day , 2009, ICCV.

[18]  Ofir Weber,et al.  Controllable conformal maps for shape deformation and interpolation , 2010, ACM Trans. Graph..

[19]  Thomas W. Sederberg,et al.  Free-form deformation of solid geometric models , 1986, SIGGRAPH.

[20]  John A. Williams,et al.  Simultaneous registration of multiple point sets using orthonormal matrices , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[21]  Kun Zhou,et al.  Interactive Shape Interpolation through Controllable Dynamic Deformation , 2011, IEEE Transactions on Visualization and Computer Graphics.

[22]  Jieqing Feng,et al.  2D shape morphing via automatic feature matching and hierarchical interpolation , 2009, Comput. Graph..

[23]  Mirela Ben-Chen,et al.  Planar shape interpolation with bounded distortion , 2013, ACM Trans. Graph..

[24]  Eitan Grinspun,et al.  Example-based elastic materials , 2011, ACM Trans. Graph..

[25]  Tommi S. Jaakkola,et al.  Introduction to dual composition for inference , 2011 .

[26]  Martin Rumpf,et al.  Time‐Discrete Geodesics in the Space of Shells , 2012, Comput. Graph. Forum.

[27]  M. Kilian,et al.  Geometric modeling in shape space , 2007, SIGGRAPH 2007.

[28]  Steven M. Seitz,et al.  Photo tourism: exploring photo collections in 3D , 2006, ACM Trans. Graph..

[29]  Jovan Popović,et al.  Deformation transfer for triangle meshes , 2004, SIGGRAPH 2004.

[30]  K. Hormann,et al.  Multi‐Scale Geometry Interpolation , 2010, Comput. Graph. Forum.

[31]  Mario Botsch,et al.  Example‐Driven Deformations Based on Discrete Shells , 2011, Comput. Graph. Forum.

[32]  Tomoyuki Nishita,et al.  Morphing using curves and shape interpolation techniques , 2000, Proceedings the Eighth Pacific Conference on Computer Graphics and Applications.

[33]  Lin Gao,et al.  A Data‐Driven Approach to Realistic Shape Morphing , 2013, Comput. Graph. Forum.

[34]  W SederbergThomas,et al.  A physically based approach to 2D shape blending , 1992 .

[35]  Kun Zhou,et al.  Gradient domain editing of deforming mesh sequences , 2007, ACM Trans. Graph..

[36]  K. Tenenblat On infinitesimal isometric deformations , 1979 .

[37]  Jovan Popović,et al.  Mesh-based inverse kinematics , 2005, SIGGRAPH 2005.

[38]  Hans-Peter Seidel,et al.  Meshless modeling of deformable shapes and their motion , 2008, SCA '08.

[39]  Ari Rappoport,et al.  Shape blending using the star-skeleton representation , 1995, IEEE Computer Graphics and Applications.

[40]  Marc Alexa,et al.  As-rigid-as-possible shape interpolation , 2000, SIGGRAPH.

[41]  Marc Alexa,et al.  As-rigid-as-possible surface modeling , 2007, Symposium on Geometry Processing.

[42]  Michael Garland,et al.  Free-form motion processing , 2008, TOGS.