Detailed balance analysis and enhancement of open-circuit voltage in single-nanowire solar cells.

We present a detailed balance analysis of current density-voltage modeling of a single-nanowire solar cell. Our analysis takes into account intrinsic material nonidealities in order to determine the theoretical efficiency limit of the single-nanowire solar cell. The analysis only requires the nanowire's absorption cross-section over all angles, which can be readily calculated analytically. We show that the behavior of both the current and voltage is due to coherent effects that arise from resonances of the nanowire. In addition, we elucidate the physics of open-circuit voltage enhancement over bulk cells in nanowires, by showing that the enhancement is related to the removal of resonances in the immediate spectral vicinity above the bandgap.

[1]  E. Yablonovitch,et al.  Limiting efficiency of silicon solar cells , 1984, IEEE Transactions on Electron Devices.

[2]  R. LaPierre,et al.  Sulfur passivation and contact methods for GaAs nanowire solar cells , 2011, Nanotechnology.

[3]  Yi Cui,et al.  Nanowire Solar Cells , 2011 .

[4]  F. Dimroth,et al.  InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit , 2013, Science.

[5]  Zongfu Yu,et al.  Detailed Balance Analysis of Nanophotonic Solar Cells References and Links , 2022 .

[6]  G. Stewart Optical Waveguide Theory , 1983, Handbook of Laser Technology and Applications.

[7]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[8]  A. Boudrioua Optical Waveguide Theory , 2010 .

[9]  S. Sze Semiconductor Devices: Physics and Technology , 1985 .

[10]  P. Barber Absorption and scattering of light by small particles , 1984 .

[11]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[12]  Xiangfeng Duan,et al.  Synthesis and optical properties of gallium arsenide nanowires , 2000 .

[13]  Linyou Cao,et al.  Engineering light absorption in semiconductor nanowire devices. , 2009, Nature materials.

[14]  Charles M Lieber,et al.  Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics , 2012, Proceedings of the National Academy of Sciences.

[15]  Eli Yablonovitch,et al.  Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit , 2012, IEEE Journal of Photovoltaics.

[16]  M. Green Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger processes , 1984, IEEE Transactions on Electron Devices.

[17]  James R. Wait SCATTERING OF A PLANE WAVE FROM A CIRCULAR DIELECTRIC CYLINDER AT OBLIQUE INCIDENCE , 1955 .

[18]  C. Gladden,et al.  Near-field electromagnetic theory for thin solar cells. , 2012, Physical review letters.

[19]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[20]  M. Green,et al.  Impurity photovoltaic effect: Fundamental energy conversion efficiency limits , 2002 .

[21]  R. Tscharner,et al.  Photovoltaic technology: the case for thin-film solar cells , 1999, Science.

[22]  K. Köhler,et al.  Auger recombination in intrinsic GaAs , 1993 .

[23]  Isik C. Kizilyalli,et al.  27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination , 2011, 2011 37th IEEE Photovoltaic Specialists Conference.

[24]  M. Green Thin-film solar cells: review of materials, technologies and commercial status , 2007 .

[25]  H. Nakano,et al.  Synthesis of GaAs nanowires with very small diameters and their optical properties with the radial quantum-confinement effect , 2009 .

[26]  W. Read,et al.  Statistics of the Recombinations of Holes and Electrons , 1952 .

[27]  Brigitte Maier,et al.  Electrodynamics Of Continuous Media , 2016 .

[28]  P. Krogstrup,et al.  Single-nanowire solar cells beyond the Shockley-Queisser limit , 2013, 1301.1068.

[29]  Martin A. Green,et al.  Limiting efficiency for current‐constrained two‐terminal tandem cell stacks , 2002 .

[30]  Zongfu Yu,et al.  Nanodome solar cells with efficient light management and self-cleaning. , 2010, Nano letters.

[31]  D. Huffaker,et al.  High-perfomance patterned arrays of core-shell GaAs nanopillar solar cells with in-situ ingap passivation layer , 2012, 2012 38th IEEE Photovoltaic Specialists Conference.

[32]  J. Munday The effect of photonic bandgap materials on the Shockley-Queisser limit , 2012 .

[33]  Ningfeng Huang,et al.  Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon , 2012 .

[34]  Peidong Yang,et al.  Semiconductor nanowires for energy conversion , 2010, 2010 3rd International Nanoelectronics Conference (INEC).

[35]  M. Green Third generation photovoltaics : advanced solar energy conversion , 2006 .

[36]  Ningfeng Huang,et al.  Electrical and optical characterization of surface passivation in GaAs nanowires. , 2012, Nano letters.

[37]  L. Landau,et al.  statistical-physics-part-1 , 1958 .

[38]  R. Hall Electron-Hole Recombination in Germanium , 1952 .