What are symmetries of nonlinear PDEs and what are they themselves

The general theory of (nonlinear) partial differential equations originated by S. Lie had a significant development in the past 30-40 years. Now this theory has solid foundations, a proper language, proper techniques and problems, and a wide area of applications to physics, mechanics, to say nothing about traditional mathematics. However, the results of this development are not yet sufficiently known to a wide public. An informal introduction in a historical perspective to this subject presented in this paper aims to give to the reader an idea about this new area of mathematics and, possibly, to attract new researchers to this, in our opinion, very promising area of modern mathematics.

[1]  A. Vinogradov Cohomological Analysis of Partial Differential Equations and Secondary Calculus , 2001 .

[2]  J. Krasilshchik HOMOLOGICAL METHODS IN EQUATIONS OF MATHEMATICAL PHYSICS 1 , 1998 .

[3]  Valentin Lychagin,et al.  Geometry of jet spaces and nonlinear partial differential equations , 1986 .

[4]  Jet Nestruev,et al.  Smooth Manifolds and Observables , 2002, Graduate Texts in Mathematics.

[5]  R. K. Luneburg,et al.  Mathematical Theory of Optics , 1966 .

[6]  Vladimir Rubtsov,et al.  Contact geometry and non-linear differential equations , 2007 .

[7]  A. Vinogradov,et al.  Differential invariants of generic parabolic Monge–Ampère equations , 2006, nlin/0604038.

[8]  N. Ibragimov Transformation groups applied to mathematical physics , 1984 .

[9]  G. Marmo,et al.  Eikonal type equations for geometrical singularities of solutions in field theory , 1994 .

[10]  A. R. Forsyth Theory of Differential Equations , 1961 .

[11]  M. Henneaux,et al.  Secondary Calculus and Cohomological Physics , 1998 .

[12]  李幼升,et al.  Ph , 1989 .

[13]  J. Cole,et al.  Similarity methods for differential equations , 1974 .

[14]  Maurice Janet Les systémes d'équations aux derivées partielles , 1911 .

[15]  A. Vinogradov Short Communications: Some Homology Systems Associated with the Differential Calculus in Commutative Algebras , 1979 .

[16]  W. Leighton,et al.  An introduction to the theory of differential equations , 1953 .

[17]  Franco Magri,et al.  A Simple model of the integrable Hamiltonian equation , 1978 .

[18]  B. Kupershmidt Geometry of jet bundles and the structure of lagrangian and hamiltonian formalisms , 1980 .

[19]  R. V. Gamkrelidze,et al.  Basic ideas and concepts of differential geometry , 1991 .

[20]  S. L. Sobolev,et al.  Applications of functional analysis in mathematical physics , 1963 .

[21]  G. Vilasi,et al.  Vacuum Einstein metrics with bidimensional Killing leaves. , 2002 .

[22]  A. Vinogradov SCALAR DIFFERENTIAL INVARIANTS, DIFFIETIES AND CHARACTERISTIC CLASSES , 1991 .

[23]  T. Tsujishita On variation bicomplexes associated to differential equations , 1982 .

[24]  On the structure of Hamiltonian operators in the field theory , 1986 .

[25]  R. Courant,et al.  Methoden der mathematischen Physik , .

[26]  I. S. Krasilʹshchik,et al.  Symmetries and Recursion Operators for Classical and Supersymmetric Differential Equations , 2000 .

[27]  F. Estabrook,et al.  Prolongation structures of nonlinear evolution equations , 1975 .

[28]  Isolated singularities of solutions of non-linear partial differential equations , 1953 .

[29]  M. Kuranishi Lectures on Exterior Differential Systems , 1962 .

[30]  S. Igonin HIGHER JET PROLONGATION LIE ALGEBRAS AND B ¨ ACKLUND TRANSFORMATIONS FOR (1 + 1)-DIMENSIONAL PDES , 2012, 1212.2199.

[31]  Differential invariants of generic parabolic Monge–Ampère equations , 2008, 0811.3947.

[32]  I. Gel'fand,et al.  Hamiltonian operators and algebraic structures related to them , 1979 .

[33]  A. Vinogradov Geometry of nonlinear differential equations , 1981 .

[34]  J. R. Ockendon,et al.  SIMILARITY, SELF‐SIMILARITY AND INTERMEDIATE ASYMPTOTICS , 1980 .

[35]  E. Cartan,et al.  Les systèmes différentiels extérieurs et leurs applications géométriques , 1945 .

[36]  V. Zakharov,et al.  Korteweg-de Vries equation: A completely integrable Hamiltonian system , 1971 .

[37]  W. M. Tulczyjew The Lagrange complex , 1977 .

[38]  Erwin Schrödinger The fundamental idea of wave mechanics , 1999 .

[39]  V. Lychagin Singularities of multivalued solutions of nonlinear differential equations, and nonlinear phenomena , 1985 .

[40]  Carl Friedrich Gauss Disquisitiones generales circa superficies curvas , 1981 .

[41]  Alexandre M. Vinogradov,et al.  Local symmetries and conservation laws , 1984 .

[42]  A. Vinogradov Symmetries of Partial Differential Equations , 1990 .

[43]  A. Vinogradov,et al.  Coverings and Fundamental Algebras for Partial Differential Equations , 2022 .

[44]  L. Schwartz Théorie des distributions , 1966 .

[45]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .