What are symmetries of nonlinear PDEs and what are they themselves
暂无分享,去创建一个
[1] A. Vinogradov. Cohomological Analysis of Partial Differential Equations and Secondary Calculus , 2001 .
[2] J. Krasilshchik. HOMOLOGICAL METHODS IN EQUATIONS OF MATHEMATICAL PHYSICS 1 , 1998 .
[3] Valentin Lychagin,et al. Geometry of jet spaces and nonlinear partial differential equations , 1986 .
[4] Jet Nestruev,et al. Smooth Manifolds and Observables , 2002, Graduate Texts in Mathematics.
[5] R. K. Luneburg,et al. Mathematical Theory of Optics , 1966 .
[6] Vladimir Rubtsov,et al. Contact geometry and non-linear differential equations , 2007 .
[7] A. Vinogradov,et al. Differential invariants of generic parabolic Monge–Ampère equations , 2006, nlin/0604038.
[8] N. Ibragimov. Transformation groups applied to mathematical physics , 1984 .
[9] G. Marmo,et al. Eikonal type equations for geometrical singularities of solutions in field theory , 1994 .
[10] A. R. Forsyth. Theory of Differential Equations , 1961 .
[11] M. Henneaux,et al. Secondary Calculus and Cohomological Physics , 1998 .
[13] J. Cole,et al. Similarity methods for differential equations , 1974 .
[14] Maurice Janet. Les systémes d'équations aux derivées partielles , 1911 .
[15] A. Vinogradov. Short Communications: Some Homology Systems Associated with the Differential Calculus in Commutative Algebras , 1979 .
[16] W. Leighton,et al. An introduction to the theory of differential equations , 1953 .
[17] Franco Magri,et al. A Simple model of the integrable Hamiltonian equation , 1978 .
[18] B. Kupershmidt. Geometry of jet bundles and the structure of lagrangian and hamiltonian formalisms , 1980 .
[19] R. V. Gamkrelidze,et al. Basic ideas and concepts of differential geometry , 1991 .
[20] S. L. Sobolev,et al. Applications of functional analysis in mathematical physics , 1963 .
[21] G. Vilasi,et al. Vacuum Einstein metrics with bidimensional Killing leaves. , 2002 .
[22] A. Vinogradov. SCALAR DIFFERENTIAL INVARIANTS, DIFFIETIES AND CHARACTERISTIC CLASSES , 1991 .
[23] T. Tsujishita. On variation bicomplexes associated to differential equations , 1982 .
[24] On the structure of Hamiltonian operators in the field theory , 1986 .
[25] R. Courant,et al. Methoden der mathematischen Physik , .
[26] I. S. Krasilʹshchik,et al. Symmetries and Recursion Operators for Classical and Supersymmetric Differential Equations , 2000 .
[27] F. Estabrook,et al. Prolongation structures of nonlinear evolution equations , 1975 .
[28] Isolated singularities of solutions of non-linear partial differential equations , 1953 .
[29] M. Kuranishi. Lectures on Exterior Differential Systems , 1962 .
[30] S. Igonin. HIGHER JET PROLONGATION LIE ALGEBRAS AND B ¨ ACKLUND TRANSFORMATIONS FOR (1 + 1)-DIMENSIONAL PDES , 2012, 1212.2199.
[31] Differential invariants of generic parabolic Monge–Ampère equations , 2008, 0811.3947.
[32] I. Gel'fand,et al. Hamiltonian operators and algebraic structures related to them , 1979 .
[33] A. Vinogradov. Geometry of nonlinear differential equations , 1981 .
[34] J. R. Ockendon,et al. SIMILARITY, SELF‐SIMILARITY AND INTERMEDIATE ASYMPTOTICS , 1980 .
[35] E. Cartan,et al. Les systèmes différentiels extérieurs et leurs applications géométriques , 1945 .
[36] V. Zakharov,et al. Korteweg-de Vries equation: A completely integrable Hamiltonian system , 1971 .
[37] W. M. Tulczyjew. The Lagrange complex , 1977 .
[38] Erwin Schrödinger. The fundamental idea of wave mechanics , 1999 .
[39] V. Lychagin. Singularities of multivalued solutions of nonlinear differential equations, and nonlinear phenomena , 1985 .
[40] Carl Friedrich Gauss. Disquisitiones generales circa superficies curvas , 1981 .
[41] Alexandre M. Vinogradov,et al. Local symmetries and conservation laws , 1984 .
[42] A. Vinogradov. Symmetries of Partial Differential Equations , 1990 .
[43] A. Vinogradov,et al. Coverings and Fundamental Algebras for Partial Differential Equations , 2022 .
[44] L. Schwartz. Théorie des distributions , 1966 .
[45] V. Arnold. Mathematical Methods of Classical Mechanics , 1974 .