Classifying vertex-transitive graphs whose order is a product of two primes

Vertex-transitive graphs whose order is a product of two primes with a primitive automorphism group containing no imprimitive subgroup are classified. Combined with the results of [15] a complete classification of all vertex-transitive graphs whose order is a product of two primes is thus obtained (Theorem 2.1).

[1]  Dragan Marusic,et al.  A class of non-Cayley vertex- transitive graphs associated with PSL(2, p) , 1992, Discret. Math..

[2]  Dragan Marusic,et al.  Imprimitive Representations of SL(2, 2k) , 1993, J. Comb. Theory, Ser. B.

[3]  Roberto Frucht,et al.  HOW TO DESCRIBE A GRAPH , 1970 .

[4]  Arthur T. White,et al.  Permutation Groups and Combinatorial Structures , 1979 .

[5]  Dragan Marusic,et al.  Permutation groups with conjugacy complete stabilizers , 1994, Discret. Math..

[6]  Arjeh M. Cohen,et al.  Linear Groups and Distance-transitive Graphs , 1989, Eur. J. Comb..

[7]  Xavier L. Hubaut,et al.  Strongly regular graphs , 1975, Discret. Math..

[8]  Dragan Marusic,et al.  Characterizing vertex-transitive pq-graphs with an imprimitive automorphism subgroup , 1992, J. Graph Theory.

[9]  Dragan Marui On vertex symmetric digraphs , 1981 .

[10]  Dragan Maruŝiĉ,et al.  Hamiltonicity of Vertex-Transitive pq-Graphs , 1992 .

[11]  I. A. Faradzev,et al.  Distance-transitive Representations of Groups G with PSL2(q) ⊴ G ⩽ PΓL2(q) , 1990, Eur. J. Comb..

[12]  Cheryl E. Praeger,et al.  Symmetric Graphs of Order a Product of Two Distinct Primes , 1993, J. Comb. Theory, Ser. B.

[13]  Dragan Marusic,et al.  A class of graphs arising from the action of PSL(2, q2) on cosets of PGL(2, q) , 1994, Discret. Math..

[14]  A. A. Ivanov,et al.  COMMUNICATIONS OF THE MOSCOW MATHEMATICAL SOCIETY: On the problem of computing the subdegrees of transitive permutation groups , 1983 .

[15]  Cheryl E. Praeger,et al.  Vertex-Primitive Graphs of Order a Product of Two Distinct Primes , 1993, J. Comb. Theory, Ser. B.

[16]  B. Huppert Endliche Gruppen I , 1967 .

[17]  J. Conway,et al.  ATLAS of Finite Groups , 1985 .

[18]  Brian Alspach,et al.  A Construction for Vertex-Transitive Graphs , 1982, Canadian Journal of Mathematics.

[19]  M. Liebeck,et al.  Primitive Permutation Groups Containing an Element of Large Prime Order , 1985 .