Recent Nanoarchitectures in Metal Nanoparticle-modified Electrodes for Electroanalysis

Increasing attention has been devoted to the use of metal nanoparticles (NPs) for electroanalysis. To make the best use of the electrocatalytic and electron-conducting characteristics of metal NPs, various nanoarchitectures have been developed for modifying metal NPs on electrode surfaces. In this review, at first recent nanoarchitectures with metal NPs for modifying electrodes are summarized together with the results of electrochemical analysis. Then, the progress of a seed-mediated growth method that we developed for modifying electrode surfaces is shown as an example that the nanoarchitectures of metal NPs are possible without using organic linker molecules. This approach should be effective for further functional modifications of the surfaces of metal NPs as well as the electrochemical analysis with lower charge-transfer resistance.

[1]  S. A. John,et al.  Size dependent electrocatalytic activity of gold nanoparticles immobilized onto three dimensional sol-gel network , 2008 .

[2]  George Chumanov,et al.  Colloidal metal films as a substrate for surface-enhanced spectroscopy , 1995 .

[3]  Rajendra N. Goyal,et al.  Differential pulse voltammetric determination of paracetamol at nanogold modified indium tin oxide electrode , 2005 .

[4]  Liping Wang,et al.  Direct electrodeposition of gold nanoparticles onto indium/tin oxide film coated glass and its application for electrochemical biosensor , 2008 .

[5]  Xuni Cao,et al.  Colloidal silver nanoparticles modified electrode and its application to the electroanalysis of Cytochrome c , 2008 .

[6]  Rajendra N. Goyal,et al.  Simultaneous Determination of Adenosine and Adenosine‐5′‐triphosphate at Nanogold Modified Indium Tin Oxide Electrode by Osteryoung Square‐Wave Voltammetry , 2007 .

[7]  A. Balamurugan,et al.  Silver Nanograins Incorporated PEDOT Modified Electrode for Electrocatalytic Sensing of Hydrogen Peroxide , 2009 .

[8]  L. Halaoui,et al.  Sensing of H2O2 at low surface density assemblies of Pt nanoparticles in polyelectrolyte. , 2008, Analytical chemistry.

[9]  Burhanuddin Yeop Majlis,et al.  Formation of high-yield gold nanoplates on the surface: Effective two-dimensional crystal growth of nanoseed in the presence of poly(vinylpyrrolidone) and cetyltrimethylammonium bromide , 2009 .

[10]  M. L. Mena,et al.  Development of a tyrosinase biosensor based on gold nanoparticles-modified glassy carbon electrodes: Application to the measurement of a bioelectrochemical polyphenols index in wines , 2005 .

[11]  W. Marsden I and J , 2012 .

[12]  Lei Zhang,et al.  Attachment of gold nanoparticles to glassy carbon electrode and its application for the voltammetric resolution of ascorbic acid and dopamine , 2005 .

[13]  María Begoña González-García,et al.  Metal‐Nanoparticles Based Electroanalysis , 2002 .

[14]  Xiaozhou Cao,et al.  Electrocatalytic Behavior and Amperometric Detection of Morphine on ITO Electrode Modified with Directly Electrodeposited Gold Nanoparticles , 2009 .

[15]  M. Porter,et al.  Attachment of gold nanoparticles to glassy carbon electrodes via a mercaptobenzene film. , 2001, Journal of the American Chemical Society.

[16]  B. Jena,et al.  Shape-Controlled Synthesis of Gold Nanoprism and Nanoperiwinkles with Pronounced Electrocatalytic Activity , 2007 .

[17]  B. Jena,et al.  Seedless, Surfactantless Room Temperature Synthesis of Single Crystalline Fluorescent Gold Nanoflowers with Pronounced SERS and Electrocatalytic Activity , 2008 .

[18]  R. G. Freeman,et al.  Preparation and Characterization of Au Colloid Monolayers , 1995 .

[19]  Mark T. McDermott,et al.  Characterization of electrochemically deposited gold nanocrystals on glassy carbon electrodes , 1999 .

[20]  Shen-ming Chen,et al.  Nano TiO2–Au–KI film sensor for the electrocatalytic oxidation of hydrogen peroxide , 2009 .

[21]  K. Hirao,et al.  Seed-mediated growth of palladium nanocrystals on indium tin oxide surfaces and their applicability as modified electrodes. , 2006, The journal of physical chemistry. B.

[22]  H. Shiigi,et al.  Characterization of Au Nanoparticle Film Electrodes Prepared on Polystyrene , 2005 .

[23]  Shen-Ming Chen,et al.  Electrochemical Analysis of H2O2 and Nitrite Using Copper Nanoparticles/Poly(o-phenylenediamine) Film Modified Glassy Carbon Electrode , 2009 .

[24]  M. Oyama,et al.  Electron Transfer Kinetics at a Liquid Phase Deposited Mesoporous TiO2 Film Seeded with Gold Nanoparticles , 2005 .

[25]  Catherine J. Murphy,et al.  Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods , 2001 .

[26]  C. Maccato,et al.  Silver nanoparticles deposited on glassy carbon. Electrocatalytic activity for reduction of benzyl chloride , 2006 .

[27]  M. Oyama,et al.  Electrocatalytic activity of three-dimensional monolayer of 3-mercaptopropionic acid assembled on gold nanoparticle arrays , 2007 .

[28]  T. Ohsaka,et al.  Size and Crystallographic Orientation Controls of Gold Nanoparticles Electrodeposited on GC Electrodes , 2005 .

[29]  Liang Wang,et al.  Nanostructured gold colloid electrode based on in situ functionalized self-assembled monolayers on gold electrode , 2006 .

[30]  Wei-Li Wu,et al.  Selective determination of dopamine in the presence of high concentration of ascorbic acid using nano-Au self-assembly glassy carbon electrode. , 2008, Colloids and surfaces. B, Biointerfaces.

[31]  E. Wang,et al.  Gold Nanoparticles as Fine Tuners of Electrochemical Properties of the Electrode/Solution Interface , 2002 .

[32]  A. A. Umar,et al.  Formation of Gold Nanoplates on Indium Tin Oxide Surface: Two-Dimensional Crystal Growth from Gold Nanoseed Particles in the Presence of Poly(vinylpyrrolidone) , 2006 .

[33]  Xuan Dai,et al.  Electroanalysis using macro-, micro-, and nanochemical architectures on electrode surfaces. Bulk surface modification of glassy carbon microspheres with gold nanoparticles and their electrical wiring using carbon nanotubes. , 2006, Analytical chemistry.

[34]  John H T Luong,et al.  Electrochemical determination of arsenite using a gold nanoparticle modified glassy carbon electrode and flow analysis. , 2006, Analytical chemistry.

[35]  Itamar Willner,et al.  Electroanalytical and Bioelectroanalytical Systems Based on Metal and Semiconductor Nanoparticles , 2004 .

[36]  C. R. Raj,et al.  Electrocatalytic Applications of Nanosized Pt Particles Self-Assembled on Sol−Gel-Derived Three-Dimensional Silicate Network , 2008 .

[37]  E. Wang,et al.  Attachment of gold nanoparticles to glassy carbon electrode and its application for the direct electrochemistry and electrocatalytic behavior of hemoglobin. , 2005, Biosensors & bioelectronics.

[38]  T. Ohsaka,et al.  Direct electron transfer of copper–zinc superoxide dismutase (SOD) on crystallographically oriented Au nanoparticles , 2007 .

[39]  Xuan Dai,et al.  Anodic stripping voltammetry of arsenic(III) using gold nanoparticle-modified electrodes. , 2004, Analytical chemistry.

[40]  Y. Tsai,et al.  Electrochemical deposition of platinum nanoparticles in multiwalled carbon nanotube–Nafion composite for methanol electrooxidation , 2008 .

[41]  I. Taniguchi,et al.  Composition–activity relationships of carbon electrode-supported bimetallic gold–silver nanoparticles in electrocatalytic oxidation of glucose , 2008 .

[42]  L. Halaoui,et al.  Adsorption of atomic hydrogen at a nanostructured electrode of polyacrylate-capped Pt nanoparticles in polyelectrolyte. , 2005, The journal of physical chemistry. B.

[43]  W. Zeng,et al.  Electrochemical Determination of Nitrite Using a Gold Nanoparticles-modified Glassy Carbon Electrode Prepared by the Seed-mediated Growth Technique , 2007, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[44]  K. Kajiya,et al.  High performance bioanode based on direct electron transfer of fructose dehydrogenase at gold nanoparticle-modified electrodes , 2009 .

[45]  Ali Eftekhari,et al.  Nanostructured Materials in Electrochemistry , 2008 .

[46]  L. Halaoui,et al.  Oxygen reduction at nanostructured electrodes assembled from polyacrylate-capped Pt nanoparticles in polyelectrolyte , 2007 .

[47]  T. Ohsaka,et al.  Gold nanoparticle arrays for the voltammetric sensing of dopamine , 2003 .

[48]  E. Wang,et al.  Colloid chemical approach to nanoelectrode ensembles with highly controllable active area fraction. , 2002, Analytical chemistry.

[49]  B. Jena,et al.  Ultrasensitive nanostructured platform for the electrochemical sensing of hydrazine , 2007 .

[50]  Hongying Liu,et al.  Self-assembly of a silver nanoparticles modified electrode and its electrocatalysis on neutral red , 2009 .

[51]  E. Farjami,et al.  Electrocatalytic oxidation of formaldehyde on palladium nanoparticles electrodeposited on carbon ionic liquid composite electrode , 2009 .

[52]  Michael J. Natan,et al.  Hydroxylamine Seeding of Colloidal Au Nanoparticles in Solution and on Surfaces , 1998 .

[53]  M. Oyama,et al.  Crystal Growth of Gold Nanoparticles on Indium Tin Oxides in the Absence and Presence of 3-Mercaptopropyl-trimethoxysilane , 2005 .

[54]  R. Murray,et al.  Monolayer-protected cluster molecules. , 2000, Accounts of chemical research.

[55]  K. Hirao,et al.  Platinum nano-cluster thin film formed on glassy carbon and the application for methanol oxidation , 2007 .

[56]  Munetaka Oyama,et al.  A novel electrode surface fabricated by directly attaching gold nanospheres and nanorods onto indium tin oxide substrate with a seed mediated growth process , 2004 .

[57]  B. Jena,et al.  Electrochemical biosensor based on integrated assembly of dehydrogenase enzymes and gold nanoparticles. , 2006, Analytical chemistry.

[58]  In Situ Fabrication of Noble Metal Nanoparticles Modified Multiwalled Carbon Nanotubes and Related Electrocatalysis , 2008 .

[59]  Osvaldo N. Oliveira,et al.  A strategy for enzyme immobilization on layer-by-layer dendrimer-gold nanoparticle electrocatalytic membrane incorporating redox mediator , 2006 .

[60]  B. Jena,et al.  Gold nanoelectrode ensembles for the simultaneous electrochemical detection of ultratrace arsenic, mercury, and copper. , 2008, Analytical chemistry.

[61]  Yi-Ge Zhou,et al.  Gold nanoparticles integrated in a nanotube array for electrochemical detection of glucose , 2009 .

[62]  I. Taniguchi,et al.  Electrocatalytic oxidation of glucose at gold nanoparticle-modified carbon electrodes in alkaline and neutral solutions , 2005 .

[63]  V. Zucolotto,et al.  Electroactive Nanostructured Membranes (ENM): Synthesis and Electrochemical Properties of Redox Mediator‐Modified Gold Nanoparticles Using a Dendrimer Layer‐by‐Layer Approach , 2007 .

[64]  Rajendra N. Goyal,et al.  Comparison of spherical nanogold particles and nanogold plates for the oxidation of dopamine and ascorbic acid , 2009 .

[65]  K. Hirao,et al.  Silver-nanoparticle-attached indium tin oxide surfaces fabricated by a seed-mediated growth approach. , 2005, The journal of physical chemistry. B.

[66]  B. Jena,et al.  Enzyme-free amperometric sensing of glucose by using gold nanoparticles. , 2006, Chemistry.

[67]  Shaojun Dong,et al.  Pt Nanoparticles Supported on TiO2 Colloidal Spheres with Nanoporous Surface: Preparation and Use as an Enhancing Material for Biosensing Applications , 2009 .

[68]  T. Ohsaka,et al.  Fabrication of Phase-Separated Multicomponent Self-Assembled Monolayers at Gold Nanoparticles Electrodeposited on Glassy Carbon Electrodes , 2006 .

[69]  M. Oyama,et al.  Gold nanoparticle-attached ITO as a biocompatible matrix for myoglobin immobilization : direct electrochemistry and catalysis to hydrogen peroxide , 2005 .

[70]  G. Hu,et al.  Electrocatalytic oxidation and simultaneous determination of uric acid and ascorbic acid on the gold nanoparticles-modified glassy carbon electrode , 2008 .

[71]  E. Wang,et al.  Raspberry-like Hierarchical Au/Pt Nanoparticle Assembling Hollow Spheres with Nanochannels: An Advanced Nanoelectrocatalyst for the Oxygen Reduction Reaction , 2009 .

[72]  Rajendra N. Goyal,et al.  Differential pulse voltammetric determination of atenolol in pharmaceutical formulations and urine using nanogold modified indium tin oxide electrode , 2006 .

[73]  G. Cheng,et al.  Controlled nucleation and growth of surface-confined gold nanoparticles on a (3-aminopropyl)trimethoxysilane-modified glass slide: a strategy for SPR substrates. , 2001, Analytical chemistry.

[74]  M. Oyama,et al.  Effects of Capping Reagents on the Electron Transfer Reactions on Gold Nanoparticle‐Attached Indium Tin Oxide Electrodes , 2007 .

[75]  Andrew G. Glen,et al.  APPL , 2001 .

[76]  M. Oyama,et al.  Surface Observation for Seed-mediated Growth Attachment of Gold Nanoparticles on a Glassy Carbon Substrate , 2009, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[77]  B. Jena,et al.  Efficient electrocatalytic oxidation of NADH at gold nanoparticles self-assembled on three-dimensional sol-gel network. , 2005, Chemical communications.

[78]  M. Natan,et al.  Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates , 1995, Science.

[79]  Yuqing Zhao,et al.  Self-assembly of gold nanoparticles for the voltammetric sensing of epinephrine , 2006 .

[80]  Y. Shao-horn,et al.  Electrostatic Layer-by-Layer Assembled Au Nanoparticle/MWNT Thin Films: Microstructure, Optical Property, and Electrocatalytic Activity for Methanol Oxidation , 2009 .

[81]  M. Oyama,et al.  Gold nanoparticle arrays directly grown on nanostructured indium tin oxide electrodes : Characterization and electroanalytical application , 2005 .

[82]  Neil Genzlinger A. and Q , 2006 .

[83]  I. Taniguchi,et al.  Effective Electrocatalytic Oxidation of Glucose at Platinum Nanoparticle-based Carbon Electrodes , 2008 .

[84]  Richard G Compton,et al.  Metal nanoparticles and related materials supported on carbon nanotubes: methods and applications. , 2006, Small.

[85]  Rajendra N. Goyal,et al.  Fast determination of salbutamol, abused by athletes for doping, in pharmaceuticals and human biological fluids by square wave voltammetry , 2007 .

[86]  Huan‐Tsung Chang,et al.  Manipulation of the growth of gold and silver nanomaterials on glass by seeding approach. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[87]  Monodisperse, submicrometer-scale platinum colloidal spheres with high electrocatalytic activity , 2009 .

[88]  E. Wang,et al.  Direct electron transfer between cytochrome c and a gold nanoparticles modified electrode , 2004 .

[89]  B. Jena,et al.  Morphology dependent electrocatalytic activity of Au nanoparticles , 2008 .

[90]  K. Hirao,et al.  In situ chemical reductive growth of platinum nanoparticles on indium tin oxide surfaces and their electrochemical applications. , 2006, The journal of physical chemistry. B.

[91]  E. Farjami,et al.  High electrocatalytic effect of palladium nanoparticle arrays electrodeposited on carbon ionic liquid electrode , 2007 .

[92]  T. Ohsaka,et al.  Electrochemical Reduction of Oxygen on Gold Nanoparticle-Electrodeposited Glassy Carbon Electrodes , 2003 .

[93]  M. Oyama,et al.  Seed Mediated Growth of Gold Nanoparticles on Indium Tin Oxide Electrodes: Electrochemical Characterization and Evaluation , 2005 .

[94]  Hai-zhu Liu,et al.  A novel non-enzymatic ECL sensor for glucose using palladium nanoparticles supported on functional carbon nanotubes. , 2009, Biosensors & bioelectronics.

[95]  Munetaka Oyama,et al.  Simultaneous determination of guanosine and guanosine-5'-triphosphate in biological sample using gold nanoparticles modified indium tin oxide electrode. , 2007, Analytica chimica acta.

[96]  P. Kannan,et al.  Electrocatalytic oxidation of ascorbic acid using a single layer of gold nanoparticles immobilized on 1,6-hexanedithiol modified gold electrode , 2007 .

[97]  A. A. Umar,et al.  Growth of high-density gold nanoparticles on an indium tin oxide surface prepared using a "touch" seed-mediated growth technique , 2005 .

[98]  I. Taniguchi,et al.  Electrocatalytic oxidation of glucose at carbon electrodes modified with gold and gold-platinum alloy nanoparticles in an alkaline solution , 2005 .

[99]  Rainer Brinkmann,et al.  Nanoscale colloidal metals and alloys stabilized by solvents and surfactants Preparation and use as catalyst precursors , 1996 .

[100]  Tzong‐Ming Wu,et al.  Electrochemical deposition of silver nanoparticles in multiwalled carbon nanotube-alumina-coated silica for surface-enhanced Raman scattering-active substrates , 2009 .

[101]  R. Compton,et al.  Direct Electrodeposition of Gold Nanoparticles onto Indium Tin Oxide Film Coated Glass: Application to the Detection of Arsenic(III) , 2006, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[102]  Jinhan Cho,et al.  Nanostructured Electrochemical Sensor Based on Dense Gold Nanoparticle Films , 2003 .

[103]  R. Compton,et al.  The use of nanoparticles in electroanalysis: a review , 2006, Analytical and bioanalytical chemistry.

[104]  M. C. Cassani,et al.  Self-assembled gold nanoparticles modified ITO electrodes : The monolayer binder molecule effect , 2008 .

[105]  H. Abruña,et al.  Composition Effects of Fept Alloy Nanoparticles on the Electro-oxidation of Formic Acid Table 1. Average Core Size, Size Distribution, and Composition of the Fexpt100-x Nanoparticles , 2022 .

[106]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[107]  B. Jena,et al.  Functionalized Mesoporous Cross-Linked Polymer As Efficient Host for Loading Gold Nanoparticles and Its Electrocatalytic Behavior for Reduction of H2O2 , 2007 .