Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review

Microsatellites, or tandem simple sequence repeats (SSR), are abundant across genomes and show high levels of polymorphism. SSR genetic and evolutionary mechanisms remain controversial. Here we attempt to summarize the available data related to SSR distribution in coding and noncoding regions of genomes and SSR functional importance. Numerous lines of evidence demonstrate that SSR genomic distribution is nonrandom. Random expansions or contractions appear to be selected against for at least part of SSR loci, presumably because of their effect on chromatin organization, regulation of gene activity, recombination, DNA replication, cell cycle, mismatch repair system, etc. This review also discusses the role of two putative mutational mechanisms, replication slippage and recombination, and their interaction in SSR variation.

[1]  J. S. Heslop-Harrison,et al.  Multiple repetitive DNA sequences in the paracentromeric regions of Arabidopsis thaliana L. , 1997, Chromosome Research.

[2]  J. L. Weber,et al.  Survey of plant short tandem DNA repeats , 1994, Theoretical and Applied Genetics.

[3]  Goutam Gupta,et al.  DNA repeats in the human genome , 2004, Genetica.

[4]  A. Beiles,et al.  Climatic effects on microsatellite diversity in wild emmer wheat (Triticum dicoccoides) at the Yehudiyya microsite, Israel , 2002, Heredity.

[5]  F. Taddei,et al.  Over-representation of repeats in stress response genes: a strategy to increase versatility under stressful conditions? , 2002, Nucleic acids research.

[6]  N. Yamada,et al.  Relative rates of insertion and deletion mutations in dinucleotide repeats of various lengths in mismatch repair proficient mouse and mismatch repair deficient human cells. , 2002, Mutation research.

[7]  G. Wood,et al.  Building Bridges in Cancer: Mismatch Repair and Microsatellite Instability , 2002, The American Journal of dermatopathology.

[8]  M. Morgante,et al.  Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes , 2002, Nature Genetics.

[9]  Y. Maehara,et al.  Microsatellite instability in cancer: what problems remain unanswered? , 2002, Surgery.

[10]  A. Pastore,et al.  A structural approach to trinucleotide expansion diseases , 2001, Brain Research Bulletin.

[11]  M. Carmo-Fonseca,et al.  Triplet repeats, RNA secondary structure and toxic gain-of-function models for pathogenesis , 2001, Brain Research Bulletin.

[12]  D. Chang,et al.  Microsatellites in the eukaryotic DNA mismatch repair genes as modulators of evolutionary mutation rate. , 2001, Genome research.

[13]  N. B. Atkin Microsatellite instability , 2001, Cytogenetic and Genome Research.

[14]  G. Aquilina,et al.  Mismatch repair in correction of replication errors and processing of DNA damage , 2001, Journal of cellular physiology.

[15]  J. R. Fresco,et al.  Functional pleiotropy of an intramolecular triplex-forming fragment from the 3'-UTR of the rat Pigr gene. , 2001, Physiological genomics.

[16]  I. V. Kovtun,et al.  Structural features of trinucleotide repeats associated with DNA expansion. , 2001, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[17]  R. Wells,et al.  Gene Conversion (Recombination) Mediates Expansions of CTG·CAG Repeats* , 2000, The Journal of Biological Chemistry.

[18]  H. Ellegren Microsatellite mutations in the germline: implications for evolutionary inference. , 2000, Trends in genetics : TIG.

[19]  A. Beiles,et al.  Edaphic microsatellite DNA divergence in wild emmer wheat, Triticum dicoccoides, at a microsite: Tabigha, Israel , 2000, Theoretical and Applied Genetics.

[20]  Pierre Baldi,et al.  Sequence analysis by additive scales: DNA structure for sequences and repeats of all lengths , 2000, Bioinform..

[21]  C. Schlötterer Evolutionary dynamics of microsatellite DNA , 2000, Chromosoma.

[22]  G. Richard,et al.  Mini‐ and microsatellite expansions: the recombination connection , 2000, EMBO reports.

[23]  G. Chambers,et al.  Microsatellites: consensus and controversy. , 2000, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[24]  J. Ott,et al.  GT repeats are associated with recombination on human chromosome 22. , 2000, Genome research.

[25]  H R Garner,et al.  Repeat polymorphisms within gene regions: phenotypic and evolutionary implications. , 2000, American journal of human genetics.

[26]  J. Jurka,et al.  Microsatellites in different eukaryotic genomes: survey and analysis. , 2000, Genome research.

[27]  R. Wells,et al.  Length of CTG.CAG repeats determines the influence of mismatch repair on genetic instability. , 2000, Journal of molecular biology.

[28]  A. Beiles,et al.  Microsatellite diversity correlated with ecological-edaphic and genetic factors in three microsites of wild emmer wheat in North Israel. , 2000, Molecular biology and evolution.

[29]  I. Scotti,et al.  Postglacial recolonization routes for Picea abies K. in Italy as suggested by the analysis of sequence‐characterized amplified region (SCAR) markers , 2000, Molecular ecology.

[30]  M. Dutreix,et al.  (CA/GT)(n) microsatellites affect homologous recombination during yeast meiosis. , 2000, Genes & development.

[31]  A. Beiles,et al.  Natural selection causing microsatellite divergence in wild emmer wheat at the ecologically variable microsite at Ammiad, Israel , 2000, Theoretical and Applied Genetics.

[32]  E. Young,et al.  Trinucleotide repeats are clustered in regulatory genes in Saccharomyces cerevisiae. , 2000, Genetics.

[33]  D. Nag,et al.  Meiotic instability of CAG repeat tracts occurs by double-strand break repair in yeast. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[34]  N V Dokholyan,et al.  Distributions of dimeric tandem repeats in non-coding and coding DNA sequences. , 2000, Journal of theoretical biology.

[35]  D. Graham,et al.  Microsatellite instability in gastric intestinal metaplasia in patients with and without gastric cancer. , 2000, The American journal of pathology.

[36]  K. Dybvig,et al.  GAA Trinucleotide Repeat Region Regulates M9/pMGA Gene Expression in Mycoplasma gallisepticum , 2000, Infection and Immunity.

[37]  B. Brandt,et al.  Modulation of EGFR Gene Transcription by a Polymorphic Repetitive Sequence – a Link between Genetics and Epigenetics , 2000, The International journal of biological markers.

[38]  H. Zoghbi,et al.  Trinucleotide repeats: mechanisms and pathophysiology. , 2000, Annual review of genomics and human genetics.

[39]  E. Boerwinkle,et al.  Recombinational and mutational hotspots within the human lipoprotein lipase gene. , 2000, American journal of human genetics.

[40]  L. Amundadottir,et al.  The effect of mismatch repair deficiency on tumourigenesis; microsatellite instability affecting genes containing short repeated sequences. , 2000, International journal of oncology.

[41]  D. Metzgar,et al.  Selection against frameshift mutations limits microsatellite expansion in coding DNA. , 2000, Genome research.

[42]  Y. Kashi,et al.  Simple sequence repeats in Escherichia coli: abundance, distribution, composition, and polymorphism. , 2000, Genome research.

[43]  T. Ogihara,et al.  Length rather than a specific allele of dinucleotide repeat in the 5′ upstream region of the aldose reductase gene is associated with diabetic retinopathy , 1999, Diabetic medicine : a journal of the British Diabetic Association.

[44]  T. Ashizawa,et al.  Very large (CAG)(n) DNA repeat expansions in the sperm of two spinocerebellar ataxia type 7 males. , 1999, Human molecular genetics.

[45]  A. Welm,et al.  CUG repeat binding protein (CUGBP1) interacts with the 5'''' region of C/EBPβ β β β mRNA and regulates translation of C/EBPβ , 1999 .

[46]  D. Eisenberg,et al.  A census of protein repeats. , 1999, Journal of molecular biology.

[47]  C. Patterson,et al.  Genotyping and functional analysis of a polymorphic (CCTTT)n repeat of NOS2A in diabetic retinopathy , 1999, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[48]  M. Broggini,et al.  CHK1 frameshift mutations in genetically unstable colorectal and endometrial cancers. , 1999, Genes, chromosomes & cancer.

[49]  P. White,et al.  Stability of the Human Fragile X (CGG)n Triplet Repeat Array inSaccharomyces cerevisiae Deficient in Aspects of DNA Metabolism , 1999, Molecular and Cellular Biology.

[50]  M. Ganal,et al.  Long tomato microsatellites are predominantly associated with centromeric regions. , 1999, Genome.

[51]  A. Eyre-Walker,et al.  Evidence of selection on silent site base composition in mammals: potential implications for the evolution of isochores and junk DNA. , 1999, Genetics.

[52]  D. Monckton,et al.  Cis-acting modifiers of expanded CAG/CTG triplet repeat expandability: associations with flanking GC content and proximity to CpG islands. , 1999, Human molecular genetics.

[53]  R. Dunham,et al.  Transcribed dinucleotide microsatellites and their associated genes from channel catfish Ictalurus punctatus. , 1999, Biochemical and biophysical research communications.

[54]  K. Zänker,et al.  Modulation of Epidermal Growth Factor Receptor Gene Transcription by a Polymorphic Dinucleotide Repeat in Intron 1* , 1999, The Journal of Biological Chemistry.

[55]  C. Schlötterer,et al.  Distribution of dinucleotide microsatellites in the Drosophila melanogaster genome. , 1999, Molecular biology and evolution.

[56]  H. Ellegren,et al.  Microsatellite evolution: polarity of substitutions within repeats and neutrality of flanking sequences , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[57]  Masaru Tomita,et al.  On Negative Selection Against ATG Triplets Near Start Codons in Eukaryotic and Prokaryotic Genomes , 1999, Journal of Molecular Evolution.

[58]  V. Pravica,et al.  CA repeat allele polymorphism in the first intron of the human interferon-gamma gene is associated with lung allograft fibrosis. , 1999, Human immunology.

[59]  W. Engels,et al.  Microsatellite instability in Drosophila spellchecker1 (MutS homolog) mutants. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[60]  E. Sensi,et al.  Microsatellite instability is co-selectable with gene amplification in a mammalian mutator phenotype. , 1999, Anticancer research.

[61]  T. Petes,et al.  Triplet repeats form secondary structures that escape DNA repair in yeast. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[62]  T. Kunkel,et al.  Functional analysis of human MutSalpha and MutSbeta complexes in yeast. , 1999, Nucleic acids research.

[63]  G. Janssen,et al.  A downstream CA repeat sequence increases translation from leadered and unleadered mRNA in Escherichia coli , 1999, Molecular microbiology.

[64]  G. Marsischky,et al.  Eukaryotic DNA mismatch repair. , 1999, Current opinion in genetics & development.

[65]  E. Eichler,et al.  Repetitive conundrums of centromere structure and function. , 1999, Human molecular genetics.

[66]  T. Wiehe,et al.  Microsatellites, a neutral marker to infer selective sweeps , 1999 .

[67]  D. King,et al.  Variation and Fidelity: The Evolution of Simple Sequence Repeats as Functional Elements in Adjustable Genes , 1999 .

[68]  A. Korol Selection for Adaptive Traits as a Factor of Recombination Evolution: Evidence from Natural and Experimental Populations (A Review) , 1999 .

[69]  A. Welm,et al.  CUG repeat binding protein (CUGBP1) interacts with the 5' region of C/EBPbeta mRNA and regulates translation of C/EBPbeta isoforms. , 1999, Nucleic acids research.

[70]  M. Broggini,et al.  Microsatellite instability and frameshift mutations in genes involved in cell cycle progression or apoptosis in ovarian cancer. , 1999, Oncology research.

[71]  M. Dutreix,et al.  Conserved sequence preference in DNA binding among recombination proteins: an effect of ssDNA secondary structure. , 1999, Nucleic acids research.

[72]  A. Clark,et al.  Negative covariance suggests mutation bias in a two-locus microsatellite system in the fish Sparus aurata. , 1998, Genetics.

[73]  Á. Cuadrado,et al.  The chromosomal organization of simple sequence repeats in wheat and rye genomes , 1998, Chromosoma.

[74]  S. Jinks-Robertson,et al.  Mismatch Repair Proteins Regulate Heteroduplex Formation during Mitotic Recombination in Yeast , 1998, Molecular and Cellular Biology.

[75]  J. Miret,et al.  Orientation-dependent and sequence-specific expansions of CTG/CAG trinucleotide repeats in Saccharomyces cerevisiae. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[76]  A. Goodridge,et al.  A CT repeat in the promoter of the chicken malic enzyme gene is essential for function at an alternative transcription start site. , 1998, Archives of biochemistry and biophysics.

[77]  V Parisi,et al.  Are only repeated triplets guilty? , 1998, Journal of theoretical biology.

[78]  J. Carbon,et al.  Structure of the Chromosome VII Centromere Region in Neurospora crassa: Degenerate Transposons and Simple Repeats , 1998, Molecular and Cellular Biology.

[79]  A. Jeffreys,et al.  High-resolution mapping of crossovers in human sperm defines a minisatellite-associated recombination hotspot. , 1998, Molecular cell.

[80]  M. Ganal,et al.  A microsatellite map of wheat. , 1998, Genetics.

[81]  K. Lesch,et al.  A promoter-associated polymorphic repeat modulates PAX-6 expression in human brain. , 1998, Biochemical and biophysical research communications.

[82]  M. Bichara,et al.  Expansion of CTG repeats from human disease genes is dependent upon replication mechanisms in Escherichia coli: the effect of long patch mismatch repair revisited. , 1998, Journal of molecular biology.

[83]  A. Estoup,et al.  THE INFLUENCE OF MUTATION, SELECTION AND REPRODUCTIVE SYSTEMS ON MICROSATELLITE VARIABILITY : A SIMULATION APPROACH , 1998 .

[84]  M. Bishop,et al.  The identification and characterization of microsatellites in the compact genome of the Japanese pufferfish, Fugu rubripes: perspectives in functional and comparative genomic analyses. , 1998, Journal of molecular biology.

[85]  S Henikoff,et al.  Something from nothing: the evolution and utility of satellite repeats. , 1998, Trends in genetics : TIG.

[86]  F. Lisacek,et al.  Global analysis of genomic texts: The distribution of AGCT tetranucleotides in the Escherichia coli and Bacillus subtilis genomes predicts translational frameshifting and ribosomal hopping in several genes , 1998, Electrophoresis.

[87]  J. Mallet,et al.  A tetranucleotide polymorphic microsatellite, located in the first intron of the tyrosine hydroxylase gene, acts as a transcription regulatory element in vitro. , 1998, Human molecular genetics.

[88]  C. Wills,et al.  Abundant microsatellite polymorphism in Saccharomyces cerevisiae, and the different distributions of microsatellites in eight prokaryotes and S. cerevisiae, result from strong mutation pressures and a variety of selective forces. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[89]  K. Wetterstrand,et al.  The distribution and frequency of microsatellite loci in Drosophila melanogaster , 1998, Molecular ecology.

[90]  M. Kimmel,et al.  Dynamic balance of segregation distortion and selection maintains normal allele sizes at the myotonic dystrophy locus. , 1998, Mathematical biosciences.

[91]  S. Karlin,et al.  Comparative DNA analysis across diverse genomes. , 1998, Annual review of genetics.

[92]  M. Dutreix,et al.  (GT)n repetitive tracts affect several stages of RecA-promoted recombination. , 1997, Journal of molecular biology.

[93]  R. Roxby,et al.  Identification of a functional CT-element in the Phytophthora infestans piypt1 gene promoter. , 1997, Gene.

[94]  S Lechat,et al.  Differences and similarities between various tandem repeat sequences: minisatellites and microsatellites. , 1997, Biochimie.

[95]  P. Awadalla,et al.  Microsatellite variation and evolution in the Mimulus guttatus species complex with contrasting mating systems. , 1997, Molecular biology and evolution.

[96]  F. Taddei,et al.  Highly variable mutation rates in commensal and pathogenic Escherichia coli. , 1997, Science.

[97]  M. Schalling,et al.  Effect of in vitro promoter methylation and CGG repeat expansion on FMR-1 expression. , 1997, Nucleic acids research.

[98]  T. Petes,et al.  Microsatellite instability in yeast: dependence on repeat unit size and DNA mismatch repair genes , 1997, Molecular and cellular biology.

[99]  J. Jurka,et al.  The Length Distribution of Perfect Dimer Repetitive DNA Is Consistent with Its Evolution by an Unbiased Single-Step Mutation Process , 1997, Journal of Molecular Evolution.

[100]  A. Fiszer-Kierzkowska,et al.  Identification of a microsatellite region composed of a long homopurine/homopyrimidine tract surrounded by AT-rich sequences upstream of the rat stress-inducible hsp 70.1 gene. , 1997, Acta biochimica Polonica.

[101]  Y. Kashi,et al.  Simple sequence repeats as a source of quantitative genetic variation. , 1997, Trends in genetics : TIG.

[102]  Yechezkel Kashi,et al.  Evolutionary tuning knobs , 1997 .

[103]  M. Zheng,et al.  Genetically unstable CXG repeats are structurally dynamic and have a high propensity for folding. An NMR and UV spectroscopic study. , 1996, Journal of molecular biology.

[104]  J. S. Heslop-Harrison,et al.  The physical and genomic organization of microsatellites in sugar beet. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[105]  H. Margalit,et al.  Microsatellite spreading in the human genome: evolutionary mechanisms and structural implications. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[106]  John M. Hancock,et al.  Simple sequences and the expanding genome. , 1996, BioEssays : news and reviews in molecular, cellular and developmental biology.

[107]  R. Sinden,et al.  Alternative structures in duplex DNA formed within the trinucleotide repeats of the myotonic dystrophy and fragile X loci. , 1996, Biochemistry.

[108]  GEORGE I. BELL,et al.  Evolution of Simple Sequence Repeats , 1996, Comput. Chem..

[109]  C. Wills,et al.  Long, polymorphic microsatellites in simple organisms , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[110]  D. Rubinsztein,et al.  Microsatellites are subject to directional evolution , 1996, Nature Genetics.

[111]  T. Kunkel,et al.  Microsatellite instability, mismatch repair deficiency, and genetic defects in human cancer cell lines. , 1995, Cancer research.

[112]  R. Sinden,et al.  Mismatch repair in Escherichia coli enhances instability of (CTG)n triplet repeats from human hereditary diseases. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[113]  M A Ferguson-Smith,et al.  Sequence variation and size ranges of CAG repeats in the Machado-Joseph disease, spinocerebellar ataxia type 1 and androgen receptor genes. , 1995, Human molecular genetics.

[114]  M. Hawn,et al.  Evidence for a connection between the mismatch repair system and the G2 cell cycle checkpoint. , 1995, Cancer research.

[115]  G. Karpen,et al.  Localization of centromere function in a drosophila minichromosome , 1995, Cell.

[116]  C. Mitchelmore,et al.  Dual regulation of the Drosophila hsp26 promoter in vitro , 1995, Nucleic Acids Res..

[117]  N. Freimer,et al.  Microsatellite allele frequencies in humans and chimpanzees, with implications for constraints on allele size. , 1995, Molecular biology and evolution.

[118]  Rainer B. Lanz,et al.  A transcriptional repressor obtained by alternative translation of a trinucleotide repeat , 1995, Nucleic Acids Res..

[119]  Wolfgang Stephan,et al.  The evolutionary dynamics of repetitive DNA in eukaryotes , 1994, Nature.

[120]  N. Chamberlain,et al.  The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. , 1994, Nucleic acids research.

[121]  J. Carbon,et al.  Cloning and characterization of centromeric DNA from Neurospora crassa , 1994, Molecular and cellular biology.

[122]  M. Nowak,et al.  Adaptive evolution of highly mutable loci in pathogenic bacteria , 1994, Current Biology.

[123]  H. Manor,et al.  Characterization of a multisubunit human protein which selectively binds single stranded d(GA)n and d(GT)n sequence repeats in DNA. , 1993, Nucleic acids research.

[124]  J. Epplen,et al.  On the essence of "meaningless" simple repetitive DNA in eukaryote genomes. , 1993, EXS.

[125]  R. Harding,et al.  The evolution of tandemly repetitive DNA: recombination rules. , 1992, Genetics.

[126]  I. Ivanov,et al.  Effect of tandemly repeated AGG triplets on the translation of CAT‐mRNA in E. coli , 1992, FEBS letters.

[127]  H. Tachida,et al.  Persistence of repeated sequences that evolve by replication slippage. , 1992, Genetics.

[128]  P. Parsons,et al.  Fluctuating asymmetry: a biological monitor of environmental and genomic stress , 1992, Heredity.

[129]  M. Sporn,et al.  Sequence specific protein binding to and activation of the TGF-beta 3 promoter through a repeated TCCC motif. , 1991, Nucleic acids research.

[130]  C. E. Hildebrand,et al.  Evolution and distribution of (GT)n repetitive sequences in mammalian genomes. , 1991, Genomics.

[131]  P. Pouwels,et al.  Functional elements in the promoter region of the Aspergillus nidulans gpdA gene encoding glyceraldehyde-3-phosphate dehydrogenase. , 1990, Gene.

[132]  W. P. Wahls,et al.  Relative frequencies of homologous recombination between plasmids introduced into DNA repair-deficient and other mammalian somatic cell lines , 1990, Somatic cell and molecular genetics.

[133]  M. Murphy,et al.  An S1 nuclease-sensitive homopurine/homopyrimidine domain in the c-Ki-ras promoter interacts with a nuclear factor. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[134]  W. P. Wahls,et al.  Homologous recombination enhancement conferred by the Z-DNA motif d(TG)30 is abrogated by simian virus 40 T antigen binding to adjacent DNA sequences , 1990, Molecular and cellular biology.

[135]  E. Winter,et al.  A DNA binding protein that recognizes oligo(dA).oligo(dT) tracts. , 1989, The EMBO journal.

[136]  R. Kornberg,et al.  Activation of yeast RNA polymerase II transcription by a thymidine-rich upstream element in vitro. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[137]  E N Trifonov,et al.  The multiple codes of nucleotide sequences. , 1989, Bulletin of mathematical biology.

[138]  N. Arnheim,et al.  The evolutionarily conserved repetitive sequence d(TG.AC)n promotes reciprocal exchange and generates unusual recombinant tetrads during yeast meiosis. , 1986, Molecular and cellular biology.

[139]  J. Stringer,et al.  RecA independent recombination of poly[d(GT)-d(CA)] in pBR322. , 1986, Nucleic acids research.

[140]  M. Solomon,et al.  A mammalian high mobility group protein recognizes any stretch of six A.T base pairs in duplex DNA. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[141]  H. Hamada,et al.  Characterization of genomic poly(dT-dG).poly(dC-dA) sequences: structure, organization, and conformation , 1984, Molecular and cellular biology.

[142]  H. Hamada,et al.  Enhanced gene expression by the poly(dT-dG).poly(dC-dA) sequence , 1984, Molecular and cellular biology.

[143]  D. Tautz,et al.  Simple sequences are ubiquitous repetitive components of eukaryotic genomes. , 1984, Nucleic acids research.