Kinetic analysis of formation of boron trioxide from thermal decomposition of boric acid under non-isothermal conditions

This study investigated the kinetic analysis of the dehydration process of boric acid (H3BO3) and its transformation into boron trioxide (B2O3) under non-isothermal conditions at three different heating rates (3, 5 and 10 °C min−1) by using thermogravimetry (TG) technique in argon flow. The results obtained from the TG curves showed that this process had three different steps; hence, continuing with this study, each of these steps underwent a kinetic analysis separately. The results of these analyses showed that: In step (I), H3BO3 transformed into HBO2, and by using model-free methods and IKP methods, kinetic triplets including the activation energy, E = 55 kJ mol−1, lnA = 5.7 min−1, and the kinetic model g(α) = [− ln(1 − α)]1/2, Avrami–Erofe’ev, were obtained. In addition, in step (II), HBO2 transformed into H2B4O7, and also, in step (III), H2B4O7 transformed into B2O3. According to obtained results, the kinetic analysis by model-free and model-fitting methods was not separately possible because of the interstep overlap and complexity of the reactions in the last two dehydration steps.

[1]  S. Vyazovkin Model-free kinetics , 2006 .

[2]  M. E. Brown,et al.  Reactions in the solid state , 2006 .

[3]  K. N. Lad,et al.  Isoconversional vs. Model fitting methods , 2007 .

[4]  A. Khanra,et al.  Production of nanocrystalline TiB2 powder through self-propagating high temperature synthesis (SHS) of TiO2–H3BO3–Mg mixture , 2014 .

[5]  Chen Donghua,et al.  An integral method to determine variation in activation energy with extent of conversion , 2005 .

[6]  A. Jamshidi,et al.  Investigation of the mechanochemical behavior of the Mg – TiO2 – H3BO3 system , 2014 .

[7]  B. Nasiri-Tabrizi,et al.  Mechanosynthesis of nanocomposites in TiO2–B2O3–Mg–Al quaternary system , 2014 .

[8]  S. Bysakh,et al.  Effect of heat treatment on morphology and thermal decomposition kinetics of multiwalled carbon nanotubes , 2011 .

[9]  A. Hărăbor,et al.  Non-conventional hexagonal structure for boric acid , 2014, Journal of Thermal Analysis and Calorimetry.

[10]  Tianxiang Li,et al.  A modified Ortega method to evaluate the activation energies of solid state reactions , 2013, Journal of Thermal Analysis and Calorimetry.

[11]  Michael R. Lovell,et al.  On the friction and wear performance of boric acid lubricant combinations in extended duration operations , 2006 .

[12]  Jianliang Zhang,et al.  Solid Phase Synthetic Reaction of Sodium Pyroxene for Na2CO3-Fe(OH)3-H2SiO3 System , 2013 .

[13]  P. Budrugeac,et al.  An iterative model-free method to determine the activation energy of non-isothermal heterogeneous processes , 2010 .

[14]  L. Pérez-Maqueda,et al.  The use of the IKP method for evaluating the kinetic parameters and the conversion function of the thermal dehydrochlorination of PVC from non-isothermal data , 2004 .

[15]  P. C. Hariharan,et al.  The influence of polarization functions on molecular orbital hydrogenation energies , 1973 .

[16]  Joseph H. Flynn,et al.  A quick, direct method for the determination of activation energy from thermogravimetric data , 1966 .

[17]  P. Budrugeac The Kissinger law and the IKP method for evaluating the non-isothermal kinetic parameters , 2007 .

[18]  S. Levchik,et al.  A method of finding invariant values of kinetic parameters , 1983 .

[19]  A. W. Coats,et al.  Kinetic Parameters from Thermogravimetric Data , 1964, Nature.

[20]  W. Zachariasen,et al.  The crystal structure of monoclinic metaboric acid , 1963 .

[21]  Marco J. Starink,et al.  The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods , 2003 .

[22]  Ammar Khawam,et al.  Role of isoconversional methods in varying activation energies of solid-state kinetics: II. Nonisothermal kinetic studies , 2005 .

[23]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[24]  S. Tung,et al.  Synthesis of boron nitride nanotubes from boron oxide by ball milling and annealing process , 2009 .

[25]  A. Khanra,et al.  Comparative Studies on Sintering Behavior of Self‐Propagating High‐Temperature Synthesized Ultra‐Fine Titanium Diboride Powder , 2005 .

[26]  G. Liptay,et al.  Kinetic analysis of thermogravimetric data , 1991 .

[27]  Joseph H. Flynn,et al.  General Treatment of the Thermogravimetry of Polymers. , 1966, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[28]  R. T. Yang,et al.  Rational approximations of the integral of the Arrhenius function , 1977 .

[29]  S. Levchik,et al.  Isoparametric kinetic relations for chemical transformations in condensed substances (analytical survey). I , 1985 .

[30]  A. Obut Thermal syntheses of magnesium borate compounds from high-energy milled MgO–B2O3 and MgO–B(OH)3 mixtures , 2008 .

[31]  Mark S. Gordon,et al.  Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements , 1982 .

[32]  S. Vyazovkin,et al.  An approach to the solution of the inverse kinetic problem in the case of complex processes. Part III. Parallel independent reactions , 1992 .

[33]  P. Budrugeac,et al.  An iterative model-free method to determine the activation energy of heterogeneous processes under arbitrary temperature programs , 2011 .

[34]  Tong B. Tang,et al.  Isoconversion method for kinetic analysis of solid-state reactions from dynamic thermoanalytical data , 1999 .

[35]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[36]  H. L. Friedman,et al.  Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic , 2007 .

[37]  T. Tang,et al.  Dynamic thermal analysis of solid-state reactions , 1997 .

[38]  Weijiang Zhang,et al.  Kinetic Study of Boron Oxide Prepared by Dehydration of Boric Acid , 2015 .

[39]  Michael R. Lovell,et al.  On the friction and wear performance of boric acid lubricant combinations in extended duration operations , 2006 .

[40]  Crisan Popescu,et al.  Integral method to analyze the kinetics of heterogeneous reactions under non-isothermal conditions A variant on the Ozawa-Flynn-Wall method , 1996 .

[41]  Jack D Sobel,et al.  Treatment of vaginitis caused by Candida glabrata: use of topical boric acid and flucytosine. , 2003, American journal of obstetrics and gynecology.

[42]  C. Schal,et al.  Synergism between Metarhizium anisopliae (Deuteromycota: Hyphomycetes) and Boric Acid against the German Cockroach (Dictyoptera: Blattellidae) , 2002 .

[43]  Timothy Clark,et al.  Efficient diffuse function‐augmented basis sets for anion calculations. III. The 3‐21+G basis set for first‐row elements, Li–F , 1983 .

[44]  Homer E. KlSSlNGER Reaction Kinetics in Differential Thermal Analysis , 1957 .

[45]  G. Chuah,et al.  Isomerisation of α-pinene oxide over B2O3/SiO2 and Al-MSU catalysts , 2004 .

[46]  D. Plazek,et al.  Viscoelastic properties of amorphous boron trioxide , 2001 .

[47]  Fatih Sevim,et al.  Kinetic analysis of thermal decomposition of boric acid from thermogravimetric data , 2006 .

[48]  T. Tang,et al.  A new method for analysing non-isothermal thermoanalytical data from solid-state reactions , 1999 .

[49]  ROBERT B. KISTLER,et al.  BORON AND BORATES , 2005 .

[50]  S. Vyazovkin Computational aspects of kinetic analysis. Part C. The ICTAC Kinetics Project — the light at the end of the tunnel? , 2000 .

[51]  Sergey Vyazovkin,et al.  A unified approach to kinetic processing of nonisothermal data , 1996 .

[52]  Sergey Vyazovkin,et al.  An approach to the solution of the inverse kinetic problem in the case of complex processes , 1990 .

[53]  F. Karimzadeh,et al.  Preparation of Al2O3–TiB2 nanocomposite powder by mechanochemical reaction between Al, B2O3 and Ti , 2011 .

[54]  M. E. Brown,et al.  “Model-free” kinetic analysis? , 2002 .

[55]  C. Eckhert,et al.  Boric acid inhibits human prostate cancer cell proliferation. , 2004, Cancer letters.

[56]  P. J. Bray,et al.  Structure of Crystalline Boron Oxide , 1968 .

[57]  Alan K. Burnham,et al.  Computational aspects of kinetic analysis: Part A: The ICTAC kinetics project-data, methods and results , 2000 .

[58]  C. D. Doyle Estimating isothermal life from thermogravimetric data , 1962 .

[59]  A. Ortega,et al.  A simple and precise linear integral method for isoconversional data , 2008 .

[60]  H. X. Chen,et al.  New approximate formulae for the generalized temperature integral , 2009 .

[61]  Nicolas Sbirrazzuoli,et al.  Isoconversional Kinetic Analysis of Thermally Stimulated Processes in Polymers , 2006 .

[62]  T. Ozawa A New Method of Analyzing Thermogravimetric Data , 1965 .

[63]  M. Chaturvedi,et al.  A differential technique for the determination of the activation energy of precipitation reactions from differential scanning calorimetric data , 1988 .

[64]  M. Shamanian,et al.  Non-Isothermal Kinetic Analysis of Oxidation of Pure Aluminum Powder Particles , 2014, Oxidation of Metals.

[65]  J. Wisniak Borax, Boric acid, and Boron—From exotic to commodity , 2005 .

[66]  S. Vyazovkin Evaluation of activation energy of thermally stimulated solid‐state reactions under arbitrary variation of temperature , 1997 .

[67]  S. Sharafi,et al.  Effect of milling speed on mechanical activation of Al/ZrO2/H3BO3 system to prepare Al2O3–ZrB2 composite powder , 2013, Journal of Thermal Analysis and Calorimetry.

[68]  A. Khanra Reaction chemistry during self-propagating high-temperature synthesis (SHS) of H3BO3-ZrO2-Mg system , 2007 .

[69]  Chengchun Tang,et al.  Synthesis of gallium borate nanowires , 2004 .

[70]  Andrei Rotaru,et al.  Thermal and kinetic study of hexagonal boric acid versus triclinic boric acid in air flow , 2016, Journal of Thermal Analysis and Calorimetry.

[71]  Alan K. Burnham,et al.  ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data , 2011 .

[72]  P. Budrugeac Differential Non-Linear Isoconversional Procedure for Evaluating the Activation Energy of Non-Isothermal Reactions , 2002 .

[73]  S. Bourbigot,et al.  Three model-Free methods for calculation of activation energy in TG , 2004 .

[74]  A. A. Joraid The effect of temperature on nonisothermal crystallization kinetics and surface structure of selenium thin films , 2007 .

[75]  Naian Liu,et al.  New incremental isoconversional method for kinetic analysis of solid thermal decomposition , 2011 .

[76]  S. Levchik,et al.  Isoparametric kinetic relations for chemical transformations in condensed substances (Analytical survey). II. Reactions involving the participation of solid substances , 1985 .

[77]  C. D. Doyle Series Approximations to the Equation of Thermogravimetric Data , 1965, Nature.

[78]  E. Eren,et al.  Boron Oxide Production Kinetics Using Boric Acid as Raw Material , 2012 .

[79]  S. Vyazovkin,et al.  Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data , 1999 .