Polarimetric modeling and parameter estimation with applications to remote sensing

Develops and analyzes two parametric models in which electromagnetic plane waves carrying polarimetric information are received. The first model considers estimation of the polarimetric response of a surface by measuring the reflections of actively generated waves. The second considers estimation of the polarization of passively generated waves. Both models have applications to remote sensing. The authors propose a natural parametrization of the distribution of the received signal. Using the Cramer-Rao bound, they characterize the best possible accuracy of unbiased estimators of these parameters. Simple estimators are given. Both models are fitted into a common framework and compared. >

[1]  A. Nashashibi,et al.  Statistical properties of the Mueller matrix of distributed targets. [measured in backscattering direction by polarimetric radar system] , 1992 .

[2]  Rama Chellappa,et al.  Segmentation of polarimetric synthetic aperture radar data , 1992, IEEE Trans. Image Process..

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  D. Giuli,et al.  Polarization diversity in radars , 1986, Proceedings of the IEEE.

[5]  David K. Barton,et al.  Modern Radar System Analysis , 1988 .

[6]  M. Kanda An Electromagnetic Near-Field Sensor for Simultaneous Electric and Magnetic-Field Measurements , 1984, IEEE Transactions on Electromagnetic Compatibility.

[7]  F. Ulaby,et al.  Radar polarimetry for geoscience applications , 1990 .

[8]  J. R. Huynen,et al.  Measurement of the target scattering matrix , 1965 .

[9]  G. Sinclair,et al.  The Transmission and Reception of Elliptically Polarized Waves , 1950, Proceedings of the IRE.

[10]  Randolph L. Moses,et al.  High resolution exponential modeling of fully polarized radar returns , 1991 .

[11]  D. Hill,et al.  A three-loop method for determining the radiation characteristics of an electrically small source , 1992 .

[12]  Fawwaz Ulaby,et al.  Relating Polaization Phase Difference of SAR Signals to Scene Properties , 1987, IEEE Transactions on Geoscience and Remote Sensing.

[13]  A. S. Pletnev,et al.  Identification of terrain imagery with unstable reflectivity , 1993, Other Conferences.

[14]  Jakob J. Vanzyl,et al.  Application of Cloude's target decomposition theorem to polarimetric imaging radar data , 1993 .

[15]  J. Kong,et al.  Theoretical models for polarimetric radar clutter , 1987 .

[16]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[17]  Leslie M. Novak,et al.  Studies of target detection algorithms that use polarimetric radar data , 1988 .

[18]  Arye Nehorai,et al.  Vector-sensor array processing for electromagnetic source localization , 1994, IEEE Trans. Signal Process..

[19]  B. Hochwald,et al.  Polarimetric modeling and parameter estimation with electromagnetic vector sensors , 1994, Proceedings of IGARSS '94 - 1994 IEEE International Geoscience and Remote Sensing Symposium.

[20]  J. Kong Electromagnetic Wave Theory , 1986 .

[21]  G. Deschamps Techniques for Handling Elliptically Polarized Waves with Special Reference to Antennas: Part II - Geometrical Representation of the Polarization of a Plane Electromagnetic Wave , 1951, Proceedings of the IRE.

[22]  Yoshio Yamaguchi,et al.  On the basic principles of radar polarimetry: the target characteristic polarization state theory of Kennaugh, Huynen's polarization fork concept, and its extension to the partially polarized case , 1991 .

[23]  N. R. Goodman Statistical analysis based on a certain multivariate complex Gaussian distribution , 1963 .

[24]  S. Cloude Target decomposition theorems in radar scattering , 1985 .

[25]  S. Cloude Uniqueness of Target Decomposition Theorems in Radar Polarimetry , 1992 .