2 PSEUDO-RATIONAL ORDER LINEAR TIME INVARIANT SYSTEMS

2 mation is actually a rational model with a time delay. Through illustrations, we show that the pseudo-rational approximation is simple and effective. It commensurate form. Useful MATLAB codes are also included in the appendix.

[1]  J. Machado Analysis and design of fractional-order digital control systems , 1997 .

[2]  Igor Podlubny,et al.  A New Discretization Method for Fractional Order Differentiators via Continued Fraction Expansion , 2003 .

[3]  I. Podlubny,et al.  Analogue Realizations of Fractional-Order Controllers , 2002 .

[4]  Chien-Cheng Tseng,et al.  Computation of fractional derivatives using Fourier transform and digital FIR differentiator , 2000, Signal Process..

[5]  Manuel Ortigueira,et al.  Special Issue on Fractional signal Processing and applications , 2003 .

[6]  S. Manabe The non-integer integral and its application to control systems. , 1961 .

[7]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[8]  M. Ichise,et al.  An analog simulation of non-integer order transfer functions for analysis of electrode processes , 1971 .

[9]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[10]  Alain Oustaloup,et al.  From fractal robustness to the CRONE control , 1999 .

[11]  Derek P. Atherton,et al.  A suboptimal reduction algorithm for linear systems with a time delay , 1994 .

[12]  Mohamad Adnan Al-Alaoui,et al.  Novel digital integrator and differentiator , 1993 .

[13]  L. Dorcak,et al.  Two digital realizations of fractional controllers: Application to temperature control of a solid , 2001, 2001 European Control Conference (ECC).

[14]  Anissa Zergaïnoh-Mokraoui,et al.  State-space representation for fractional order controllers , 2000, Autom..

[15]  Chien-Cheng Tseng,et al.  Design of fractional order digital FIR differentiators , 2001, IEEE Signal Process. Lett..

[16]  Alain Oustaloup,et al.  The CRONE toolbox for Matlab , 2000, CACSD. Conference Proceedings. IEEE International Symposium on Computer-Aided Control System Design (Cat. No.00TH8537).

[17]  Yoshiaki Hirano,et al.  Simulation of Fractal Immittance by Analog Circuits: An Approach to the Optimized Circuits , 1999 .

[18]  Feng-Sheng Wang,et al.  OPTIMAL TUNING OF PID CONTROLLERS FOR SINGLE AND CASCADE CONTROL LOOPS , 1995 .

[19]  Mohamad Adnan Al-Alaoui,et al.  A class of second-order integrators and low-pass differentiators , 1995 .

[20]  Xavier Moreau,et al.  The CRONE Suspension , 1996 .

[21]  K. B. Oldham Semiintegral electroanalysis. Analog implementation , 1973 .

[22]  Alain Oustaloup,et al.  The CRONE Control of Resonant Plants: Application to a Flexible Transmission , 1995, Eur. J. Control.

[23]  M. E. Bise,et al.  Fractional calculus application in control systems , 1990, IEEE Conference on Aerospace and Electronics.

[24]  Mohamad Adnan Al-Alaoui,et al.  Filling The Gap Between The Bilinear and The Backward-Difference Transforms: An Interactive Design Approach , 1997 .

[25]  K. Moore,et al.  Discretization schemes for fractional-order differentiators and integrators , 2002 .

[26]  Yangquan Chen,et al.  Two direct Tustin discretization methods for fractional-order differentiator/integrator , 2003, J. Frankl. Inst..

[27]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[28]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[29]  Y. Chen,et al.  Realization of fractional order controllers , 2003 .

[30]  Yangquan Chen,et al.  A new IIR-type digital fractional order differentiator , 2003, Signal Process..

[31]  Alain Oustaloup,et al.  Fractional order sinusoidal oscillators: Optimization and their use in highly linear FM modulation , 1981 .

[32]  I. Petras,et al.  The fractional - order controllers: Methods for their synthesis and application , 2000, math/0004064.