Inertia theorems for operator pencils and applications
暂无分享,去创建一个
[1] P. Stein. Some general theorems on iterants , 1952 .
[2] Olga Taussky,et al. A Generalization of a Theorem of Lyapunov , 1961 .
[3] Hans Schneider,et al. Some theorems on the inertia of general matrices , 1962 .
[4] O. Taussky. Matrices C with Cn → 0 , 1964 .
[5] R. D. Hill,et al. Inertia theory for simultaneously triangulable complex matrices , 1969 .
[6] H. Wielandt,et al. On the eigenvalues of A + B and AB , 1973 .
[7] H. Wimmer,et al. On the Ostrowski-Schneider Inertia Theorem , 1973 .
[8] M. Kreĭn,et al. Stability of Solutions of Differential Equations in Banach Spaces , 1974 .
[9] J. Schäffer. Review: Ju. L. Daleckii and M. G. Kreĭn, Stability of solutions of differential equations in Banach space , 1975 .
[10] Harald K. Wimmer,et al. Remarks on inertia theorems for matrices , 1975 .
[11] H. Langer,et al. Introduction to the spectral theory of operators in spaces with an indefinite metric , 1982 .
[12] F. R. Gantmakher. The Theory of Matrices , 1984 .
[13] On two theorems of M. G. Krein concerning polynomials orthogonal on the unit circle , 1988 .
[14] I. Gohberg,et al. Matrix Generalizations of M. G. Krein Theorems on Orthogonal Polynomials , 1988 .
[15] Orthogonal Matrix-valued Polynomials and Applications , 1988 .
[16] Block Toeplitz Operators with Rational Symbols , 1988 .
[17] T. Azizov,et al. Linear Operators in Spaces with an Indefinite Metric , 1989 .
[18] Inertia theorems for block weighted shifts and applications , 1992 .