Inertia theorems for operator pencils and applications

In this paper we obtain general infinite dimensional inertia theorems for linear pencils in Hilbert space which cover previously known results for the finite dimensional case and for block weighted shifts. Connections with definite subspaces for contractions in spaces with indefinite metric are discussed.

[1]  P. Stein Some general theorems on iterants , 1952 .

[2]  Olga Taussky,et al.  A Generalization of a Theorem of Lyapunov , 1961 .

[3]  Hans Schneider,et al.  Some theorems on the inertia of general matrices , 1962 .

[4]  O. Taussky Matrices C with Cn → 0 , 1964 .

[5]  R. D. Hill,et al.  Inertia theory for simultaneously triangulable complex matrices , 1969 .

[6]  H. Wielandt,et al.  On the eigenvalues of A + B and AB , 1973 .

[7]  H. Wimmer,et al.  On the Ostrowski-Schneider Inertia Theorem , 1973 .

[8]  M. Kreĭn,et al.  Stability of Solutions of Differential Equations in Banach Spaces , 1974 .

[9]  J. Schäffer Review: Ju. L. Daleckii and M. G. Kreĭn, Stability of solutions of differential equations in Banach space , 1975 .

[10]  Harald K. Wimmer,et al.  Remarks on inertia theorems for matrices , 1975 .

[11]  H. Langer,et al.  Introduction to the spectral theory of operators in spaces with an indefinite metric , 1982 .

[12]  F. R. Gantmakher The Theory of Matrices , 1984 .

[13]  On two theorems of M. G. Krein concerning polynomials orthogonal on the unit circle , 1988 .

[14]  I. Gohberg,et al.  Matrix Generalizations of M. G. Krein Theorems on Orthogonal Polynomials , 1988 .

[15]  Orthogonal Matrix-valued Polynomials and Applications , 1988 .

[16]  Block Toeplitz Operators with Rational Symbols , 1988 .

[17]  T. Azizov,et al.  Linear Operators in Spaces with an Indefinite Metric , 1989 .

[18]  Inertia theorems for block weighted shifts and applications , 1992 .