The electroencephalogram (EEG) as a research tool in human behavior genetics: Psychological examinations in healthy males with various inherited EEG variants

SummaryInterpretation of the results from psychological examinations of 298 probands with inherited EEG variants requires (1) critical evaluation of previous literature on psychological EEG correlates, (2) knowledge of the main concepts and experimental approaches for elucidating the basic mechanisms of EEG rhythms, (3) discussion of previous attempts to link psychological variation in human populations with corresponding variation in brain function, and (4) interpretation of results from considerations at these three levels with the data from out own study.At the first level (previous psychological studies), comparison with Schmettau's study proved to be especially revealing: Her conclusions about personality correlates with high α-index and with “flat” EEGs were very similar to ours with the monotonous α-(R) and low-voltage (N) EEGs, respectively. Her EEG type with high β-index overlaps with our β-diffuse (BD) type; a tendency to ssychasthenia and low resistance to stress is less obvious in our group, but is expressed indirectly by reduced speed and accuracy in tests requiring attentiveness and persistence. The correlation between α-frequency and intelligence found in other studies was confirmed by the especially high intelligence scores of our group with occipital fast α-variants (BO).At the second and third levels of the discussion (EEG mechanisms; neurophysiological theories), the cooperation of cerebral cortex (EEG battery), thalamus (pacemaker), and ARAS (tonic arousal) is discussed, and the personality typologies of Eysenck and Claridge are mentioned. From this and other evidence, the following hypotheses are discussed:1)The personality profiles of the R group are influenced by high activity and efficiency of the thalamic α-pacemaker(s), which leads to a high degree of modulation, selection, and amplification of afferent stimuli.2)In the countertype of this EEG variant, the N EEG, a low modulation and amplification by the thalamic α-pacemaker is assumed. This leads to relatively low intensity of feeling and to low spontaneous activity, but to faster information processing. Combined with an increased level of tonic arousal in the ARAS, it may cause certain ‘neurotic’ complaints (our low-voltage borderline (NG) group).3)The EEG with diffuse β-waves (BD) is caused by a high level of tonic arousal in the ARAS, which tends to disturb the thalamocortical circuit. This leads to reduced stress resistance and to impairment of intellectual functions, especially space perception. Due to limited evidence, the next two hypotheses are advanced only tentatively:4)α-rhythm with very high frequency (16–19 c/s) leads to improvement of information processing and, hence, to high intellectual performance and motor dexterity.5)Probands with frontoprecentral β-groups (BG) show no psychological signs of increased tonic arousal; therefore, these β-groups are caused not by increased tonic arousal of the ARAS, but by a genetic variant of a thalamic subsystem.

[1]  Johannes Nielsen,et al.  ELECTROENCEPHALOGRAPHIC EXAMINATION of 50 WOMEN WITH TURNER'S SYNDROME , 1976, Acta neurologica Scandinavica.

[2]  C. Shagass An attempt to correlate the occipital alpha frequency of the electroencephalogram with performance on a mental ability test. , 1946, Journal of experimental psychology.

[3]  W. McAdam,et al.  Personality traits and the normal electro-encephalogram. , 1954, The Journal of mental science.

[4]  P. Werre The Relationships between electroencephalographic and psychological data in normal adults , 1957 .

[5]  H. Jasper,et al.  Diffuse projection systems: the integrative action of the thalamic reticular system. , 1949, Electroencephalography and clinical neurophysiology.

[6]  Becker Pe Neuroses in the light of genetics , 1958 .

[7]  D. Lindsley Psychological phenomena and the electroencephalogram. , 1952, Electroencephalography and clinical neurophysiology.

[8]  P Andersen,et al.  Some factors involved in the thalamic control of spontaneous barbiturate spindles , 1967, The Journal of physiology.

[9]  M. Brazier,et al.  A CONTRAST BETWEEN THE ELECTROENCEPHALOGRAMS OF 100 PSYCHONEUROTIC PATIENTS AND THOSE OF 500 NORMAL ADULTS , 1945 .

[10]  P Andersen,et al.  Nature of thalamo‐cortical relations during spontaneous barbiturate spindle activity , 1967, The Journal of physiology.

[11]  P. Propping Genetic control of ethanol action on the central nervous system , 1977, Human Genetics.

[12]  Anne Anastasi,et al.  Differential Psychology: Individual and Group Differences in Behavior , 1958 .

[13]  W. Grey Walter,et al.  The Objective Study of Mental Imagery , 1943 .

[14]  L. Moses,et al.  Electroencephalographic Studies in Asthma with Some Personality Correlates* , 1944 .

[15]  W Kuhlo,et al.  The 4-5 c-sec rhythm. , 1969, Electroencephalography and clinical neurophysiology.

[16]  P. Propping,et al.  The kinetics of ethanol absorption and elimination in twins and supplementary repetitive experiments in singleton subjects , 2004, European Journal of Clinical Pharmacology.

[17]  K KRISTIANSEN,et al.  Rhythmic electrical activity from isolated cerebral cortex. , 1949, Electroencephalography and clinical neurophysiology.

[18]  F. Vogel,et al.  [On the absence of any relation between coffee consumption of parents and the sex ratio among their children]. , 1966, Humangenetik.

[19]  R. Weinshilboum Human biochemical genetics of plasma dopamine-beta-hydroxylase and erythrocyte catechol-o-methyltransferase. , 1978, Human genetics. Supplement.

[20]  P. Propping,et al.  The electroencephalogram (EEG) as a research tool in human behavior genetics: Psychological examinations in healthy males with various inherited EEG variants , 1979, Human Genetics.

[21]  F. Vogel,et al.  The incidence of some inherited EEG variants in normal Japanese and German males , 2004, Humangenetik.

[22]  R. Wilcott,et al.  EEG frequency-pattern variation and intelligence; a correlational study. , 1957, Electroencephalography and clinical neurophysiology.

[23]  P. Propping,et al.  Plasma DBH, platelet MAO and proteins of red blood cell membranes in individuals with variants of the normal EEG. , 1979, Neuropsychobiology.

[24]  Friedrich Vogel,et al.  Familienuntersuchungen zur Genetik des normalen Elektrencephalogramms , 2004, Deutsche Zeitschrift für Nervenheilkunde.

[25]  J. Knott,et al.  A note on the relationship between duration and amplitude of cortical potentials. , 1937 .

[26]  R. J. Ellingson,et al.  ON THE RELATIONSHIP BETWEEN “NORMAL” EEG PATTERNS AND PERSONALITY VARIABLES , 1955, The Journal of nervous and mental disease.

[27]  R. J. Ellingson Brain waves and problems of psychology. , 1956, Psychological bulletin.

[28]  Hans Berger,et al.  Das Elektrenkephalogramm des Menschen , 1935, Naturwissenschaften.

[29]  J. Knott,et al.  Brain potentials during sleep: a comparative study of the dominant and non-dominant alpha groups , 1939 .

[30]  J. Holman Upper Pliocene Snakes from Idaho , 1968 .

[31]  L. Jarvik,et al.  Human intelligence: sex differences. , 1975, Acta geneticae medicae et gemellologiae.

[32]  L. Ehrman,et al.  THE GENETICS OF BEHAVIOR , 1979 .

[33]  H. Berger Über das Elektrenkephalogramm des Menschen , 1933, Archiv für Psychiatrie und Nervenkrankheiten.

[34]  J. Eccles,et al.  Interpretation of action potentials evoked in the cerebral cortex. , 1951, Electroencephalography and clinical neurophysiology.

[35]  R. Weinshilboum,et al.  Inheritance of very low serum dopamine-beta-hydroxylase activity. , 1975, American journal of human genetics.

[36]  R. Morison,et al.  SPONTANEOUS ELECTRICAL ACTIVITY OF THE THALAMUS AND OTHER FOREBRAIN STRUCTURES , 1943 .

[37]  Robert J. Ellingson,et al.  Relationship between EEG and test intelligence: A commentary. , 1966 .

[38]  R. Morison,et al.  A STUDY OF THALAMO-CORTICAL RELATIONS , 1941 .

[39]  A. Mundy-castle,et al.  Electrophysiological correlates of intelligence. , 1958, Journal of personality.

[40]  G. H. Lathrop,et al.  Intelligence and frequency of the alpha rhythm. , 1973, American journal of mental deficiency.

[41]  P. Davis,et al.  Psychologic Correlations with the Electroencephalogram , 1949, Psychosomatic medicine.

[42]  G. Moruzzi,et al.  Brain stem reticular formation and activation of the EEG. , 1949, Electroencephalography and clinical neurophysiology.

[43]  S. G. Vandenberg,et al.  Genetics of specific cognitive abilities. , 1976, Annual review of genetics.

[44]  D B Rubin,et al.  Criminality in XYY and XXY men. , 1976, Science.

[45]  H. Berger,et al.  Über das Elektrenkephalogramm des Menschen , 1937, Archiv für Psychiatrie und Nervenkrankheiten.

[46]  H. Eysenck Biological Basis of Personality , 1963, Nature.

[47]  Hans Berger,et al.  Über das Elektrenkephalogramm des Menschen , 1937, Archiv für Psychiatrie und Nervenkrankheiten.

[48]  F. Vogel,et al.  Statistische Betrachtungen über die β-Wellen im EEG des Menschen , 2004, Deutsche Zeitschrift für Nervenheilkunde.

[49]  Juergen E. Thomas Uber die Erblichkeit des normalen Elektroencephalogramms. , 1959 .

[50]  M. Ostow Psychic function and the electroencephalogram. , 1950, Archives of neurology and psychiatry.

[51]  Alfred L. Loomis,et al.  Electrical potentials of the human brain , 1936 .

[52]  M. Casey The XYY Syndrome and Klinefelter's Syndrome , 1975 .

[53]  H. Schepank Erb- und Umweltfaktoren bei Neurosen , 1974 .

[54]  S. Andersson,et al.  Physiological basis of the alpha rhythm , 1968 .

[55]  F. Vogel,et al.  Human Genetics: Problems and Approaches , 1979 .

[56]  P. Propping,et al.  Alcohol and alcoholism. , 1978, Human genetics. Supplement.

[57]  K. M. Bowman,et al.  ELECTROENCEPHALOGRAPHIC AND PERSONALITY CORRELATES IN PEPTIC ULCER , 1942 .

[58]  Friedrich Vogel,et al.  Ergänzende Untersuchungen zur Genetik des menschlichen Niederspannungs-EEG , 2004, Deutsche Zeitschrift für Nervenheilkunde.

[59]  F. Vogel Zur genetischen Grundlage fronto-präzentraler ß-Wellen-Gruppen im EEG des Menschen , 2004, Humangenetik.

[60]  F. Vogel [Supplementary studies on the genetics of human low-voltage electroencephalography]. , 1962, Deutsche Zeitschrift fur Nervenheilkunde.

[61]  F. Vogel,et al.  A twin study on three enzymes (DBH, COMT, MAO) of catecholamine metabolism , 1978, Psychopharmacology.

[62]  F. Vogel,et al.  The genetic basis of the normal human electroencephalogram (EEG) , 1970, Humangenetik.

[63]  F. Vogel,et al.  [The sex differences in the normal resting EEG of young adults (author's transl)]. , 1979, EEG-EMG Zeitschrift fur Elektroenzephalographie, Elektromyographie und verwandte Gebiete.

[64]  D. L. Bassett,et al.  ELECTRICAL ACTIVITY OF THE THALAMUS AND BASAL GANGLIA IN DECORTICATE CATS , 1946 .

[65]  R. Morison,et al.  MECHANISM OF THALAMOCORTICAL AUGMENTATION AND REPETITION , 1943 .

[66]  F. Vogel Untersuchungen zur Genetik der β-Wellen im EEG des Menschen , 2004, Deutsche Zeitschrift für Nervenheilkunde.

[67]  F. Vogel,et al.  [Statistical observations on the beta-waves in human electroencephalography]. , 1962, Deutsche Zeitschrift fur Nervenheilkunde.

[68]  H. Dieker Untersuchungen zur Genetik besonders regelmäßiger hoher Alpha-Wellen im EEG des Menschen , 1967, Humangenetik.

[69]  A. J. Derbyshire,et al.  THE EFFECTS OF ANESTHETICS ON ACTION POTENTIALS IN THE CEREBRAL CORTEX OF THE CAT , 1936 .

[70]  Frédéric Bremer,et al.  L'activité électrique de l'écorce cérébrale , 1938 .

[71]  Poul Høncke,et al.  Elektrencephalographische Untersuchungen an Psychopathen , 2005, Archiv für Psychiatrie und Nervenkrankheiten.

[72]  Friedrich Vogel,et al.  Zur genetischen Grundlage occipitaler langsamer β-wellen im EEG des Menschen , 2004, Humangenetik.

[73]  F. Vogel,et al.  The electroencephalogram (EEG) as a research tool in human behavior genetics: Psychological examinations in healthy males with various inherited EEG variants , 1979, Human Genetics.

[74]  A. Mundy-castle,et al.  Intelligence, Personality and Brain Rhythms in a Socially Isolated Community , 1960, Nature.

[75]  Hans Berger,et al.  Über das Elektrenkephalogramm des Menschen , 1931, Archiv für Psychiatrie und Nervenkrankheiten.