Theoretical Study of the Gate Leakage Current in Sub-10-nm Field-Effect Transistors

Scaling field-effect transistors (FETs) with conventional semiconductor channels requires a reduction of the body or fin thickness or of the diameter of the nanowire (NW) channel. We present a theoretical study showing that the increase of the ground-state sub-band energy induced by the quantum confinement associated with this scaling results in a dramatic reduction of the barrier at the channel/gate-insulator interface, which causes an increase of the leakage current across the gate insulator. We have studied the problem using scaling rules extracted from the 2011 International Technology Roadmap for Semiconductors (ITRS)-Roadmap (finding them excessively relaxed) and using more strict scaling rules from the literature confirmed by simulations of 5-nm gate-length III-V FETs. Employing local empirical pseudopotentials to calculate the electronic structure of Si and InAs thin bodies, the leakage gate current in the ON-state is shown to reach worrisome values at gate lengths of about 5 nm. This suggests that 1-D channels (i.e., NWs), but especially channels based on intrinsically 2-D (e.g., graphene/graphane or transition-metals dichalcogenides) or 1-D (e.g., carbon nanotubes) structures, are required to push scaling toward the 5-nm node.

[1]  M. Fischetti,et al.  Modeling of electron mobility in gated silicon nanowires at room temperature: Surface roughness scattering, dielectric screening, and band nonparabolicity , 2007 .

[2]  A. J. Williamson,et al.  Pseudopotential study of electron-hole excitations in colloidal free-standing InAs quantum dots , 1999, cond-mat/9908158.

[3]  Ming Zhu,et al.  5 nm gate length Nanowire-FETs and planar UTB-FETs with pure germanium source/drain stressors and laser-free Melt-Enhanced Dopant (MeltED) diffusion and activation technique , 2008, 2008 Symposium on VLSI Technology.

[4]  S. Laux,et al.  Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys , 1996 .

[5]  A. Asenov,et al.  Simulation Study of Individual and Combined Sources of Intrinsic Parameter Fluctuations in Conventional Nano-MOSFETs , 2006, IEEE Transactions on Electron Devices.

[6]  Tzu-Ying Lin,et al.  Energy-band parameters of atomic-layer-deposition Al2O3/InGaAs heterostructure , 2006 .

[7]  Dapeng Yu,et al.  Sub-10 nm Gate Length Graphene Transistors: Operating at Terahertz Frequencies with Current Saturation , 2013, Scientific Reports.

[8]  D. Monroe,et al.  Analytic description of short-channel effects in fully-depleted double-gate and cylindrical, surrounding-gate MOSFETs , 2000, IEEE Electron Device Letters.

[9]  D. Frank,et al.  Generalized scale length for two-dimensional effects in MOSFETs , 1998, IEEE Electron Device Letters.

[10]  Richard Martel,et al.  Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes , 2002 .

[11]  Guido Groeseneken,et al.  Impact of field-induced quantum confinement in tunneling field-effect devices , 2011 .

[12]  Yuan Taur,et al.  On the scaling limit of ultrathin SOI MOSFETs , 2006 .

[13]  Chenming Hu,et al.  5nm-gate nanowire FinFET , 2004, Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004..

[14]  Lin-Wang Wang,et al.  Electronic structures of [110]-faceted self-assembled pyramidal InAs/GaAs quantum dots , 1999 .

[15]  Zunger,et al.  Electronic structure of semiconductor quantum films. , 1993, Physical review. B, Condensed matter.

[16]  J. Padilla,et al.  A Simple Approach to Quantum Confinement in Tunneling Field-Effect Transistors , 2012, IEEE Electron Device Letters.

[17]  John Robertson,et al.  Band offsets of high K gate oxides on III-V semiconductors , 2006 .

[18]  G. A. Farias,et al.  Effective masses and complex dielectric function of cubic HfO2 , 2004, 1204.2895.

[19]  Chenming Hu,et al.  Threshold voltage shift by quantum confinement in ultra-thin body device , 2001, Device Research Conference. Conference Digest (Cat. No.01TH8561).

[20]  Paul K. Hurley,et al.  Determination of electron effective mass and electron affinity in HfO2 using MOS and MOSFET structures , 2009 .

[21]  Lin-Wang Wang,et al.  Electronic Structure Pseudopotential Calculations of Large (-1000 Atoms ) Si Quantum Dots , 2001 .

[22]  Z. Weinberg,et al.  On tunneling in metal‐oxide‐silicon structures , 1982 .

[23]  S. Laux,et al.  Comments on "Monte Carlo simulation of transport in technologically significant semiconductors of the diamond and zinc-blende structures. II. Submicrometer MOSFETs" [with reply] , 1991 .

[24]  J.M.C. Stork,et al.  The impact of high-/spl kappa/ gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs , 1999 .

[25]  M. Fischetti Monte Carlo simulation of transport in technologically significant semiconductors of the diamond and zinc-blende structures. I. Homogeneous transport , 1991 .

[26]  S. Takagi,et al.  Experimental study on electron mobility in ultrathin-body silicon-on-insulator metal-oxide-semiconductor field-effect transistors , 2007 .

[27]  Dissipative Quantum Transport using the Pauli Master Equation , 2009, 2009 13th International Workshop on Computational Electronics.

[28]  Jeffrey Bokor,et al.  Ultimate device scaling: Intrinsic performance comparisons of carbon-based, InGaAs, and Si field-effect transistors for 5 nm gate length , 2011, 2011 International Electron Devices Meeting.

[29]  Yuan Taur,et al.  Scaling of Nanowire Transistors , 2008, IEEE Transactions on Electron Devices.

[30]  Lin-Wang Wang,et al.  Electronic Structure Pseudopotential Calculations of Large (.apprx.1000 Atoms) Si Quantum Dots , 1994 .

[31]  Andrew R. Brown,et al.  Intrinsic fluctuations in sub 10-nm double-gate MOSFETs introduced by discreteness of charge and matter , 2002 .

[32]  P. Asbeck,et al.  Scaling MOSFETs to 10 nm: Coulomb effects, source starvation, and virtual source model , 2009 .

[33]  G. Klimeck,et al.  Material Selection for Minimizing Direct Tunneling in Nanowire Transistors , 2012, IEEE Transactions on Electron Devices.

[34]  M. Fischetti,et al.  Semiclassical and Quantum Electronic Transport in Nanometer-Scale Structures: Empirical Pseudopotential Band Structure, Monte Carlo Simulations and Pauli Master Equation , 2011 .

[35]  Craig S. Lent,et al.  The quantum transmitting boundary method , 1990 .