Object segmentation and recovery via neural oscillators implementing the similarity and prior knowledge gestalt rules.

[1]  K. Koffka Principles Of Gestalt Psychology , 1936 .

[2]  T. Kohonen Self-organized formation of topographically correct feature maps , 1982 .

[3]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[4]  W. Singer,et al.  Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Joachim M. Buhmann,et al.  Pattern Segmentation in Associative Memory , 1990, Neural Computation.

[6]  M. Tovée,et al.  Oscillatory activity is not evident in the primate temporal visual cortex with static stimuli , 1992, Neuroreport.

[7]  W. Singer Synchronization of cortical activity and its putative role in information processing and learning. , 1993, Annual review of physiology.

[8]  Werner Lutzenberger,et al.  Words and pseudowords elicit distinct patterns of 30-Hz EEG responses in humans , 1994, Neuroscience Letters.

[9]  R. Palmer,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[10]  Michael A. Arbib,et al.  The handbook of brain theory and neural networks , 1995, A Bradford book.

[11]  Deliang Wang,et al.  Global competition and local cooperation in a network of neural oscillators , 1995 .

[12]  W Singer,et al.  Visual feature integration and the temporal correlation hypothesis. , 1995, Annual review of neuroscience.

[13]  N. Birbaumer,et al.  Brain Rhythms of Language: Nouns Versus Verbs , 1996, The European journal of neuroscience.

[14]  DeLiang Wang,et al.  Image Segmentation Based on Oscillatory Correlation , 1997, Neural Computation.

[15]  H. Markram,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997, Science.

[16]  Catherine Tallon-Baudry,et al.  Induced γ-Band Activity during the Delay of a Visual Short-Term Memory Task in Humans , 1998, The Journal of Neuroscience.

[17]  C M Krause,et al.  Automatic auditory word perception as measured by 40 Hz EEG responses. , 1998, Electroencephalography and clinical neurophysiology.

[18]  E. Rolls,et al.  Neural networks and brain function , 1998 .

[19]  James A. Anderson,et al.  An Introduction To Neural Networks , 1998 .

[20]  Zhaoping Li,et al.  A Neural Model of Contour Integration in the Primary Visual Cortex , 1998, Neural Computation.

[21]  O. Bertrand,et al.  Sustained and transient oscillatory responses in the gamma and beta bands in a visual short-term memory task in humans , 1999, Visual Neuroscience.

[22]  Wolf Singer,et al.  Neuronal Synchrony: A Versatile Code for the Definition of Relations? , 1999, Neuron.

[23]  Reinhard Eckhorn,et al.  Neural mechanisms of scene segmentation: recordings from the visual cortex suggest basic circuits for linking field models , 1999, IEEE Trans. Neural Networks.

[24]  F. Varela,et al.  Perception's shadow: long-distance synchronization of human brain activity , 1999, Nature.

[25]  Carlos Lourenço,et al.  Pattern segmentation in a binary/analog world: unsupervised learning versus memory storing , 2000, Neural Networks.

[26]  W. Singer,et al.  Dynamic predictions: Oscillations and synchrony in top–down processing , 2001, Nature Reviews Neuroscience.

[27]  H. Petsche,et al.  Long-Range Synchrony in the γ Band: Role in Music Perception , 2001, The Journal of Neuroscience.

[28]  Roman Borisyuk,et al.  Object selection by an oscillatory neural network. , 2002, Bio Systems.

[29]  J. B. Levitt,et al.  Circuits for Local and Global Signal Integration in Primary Visual Cortex , 2002, The Journal of Neuroscience.

[30]  A. Keil,et al.  Modulation of Induced Gamma Band Responses in a Perceptual Learning Task in the Human EEG , 2002, Journal of Cognitive Neuroscience.

[31]  DeLiang Wang,et al.  Scene analysis by integrating primitive segmentation and associative memory , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[32]  J. Kaiser,et al.  Induced Gamma-Band Activity and Human Brain Function , 2003, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[33]  Alessandro Sarti,et al.  Binding and segmentation of multiple objects through neural oscillators inhibited by contour information , 2003, Biological Cybernetics.

[34]  Mauro Ursino,et al.  Modeling segmentation of a visual scene via neural oscillators: fragmentation, discovery of details and attention. , 2004, Network.

[35]  Teuvo Kohonen,et al.  Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.

[36]  Ch. von der Malsburg,et al.  A neural cocktail-party processor , 1986, Biological Cybernetics.

[37]  Roman Borisyuk,et al.  Oscillatory model of attention-guided object selection and novelty detection , 2004, Neural Networks.

[38]  Mauro Ursino,et al.  A model of contextual interactions and contour detection in primary visual cortex , 2004, Neural Networks.

[39]  Joachim M. Buhmann,et al.  Sensory segmentation with coupled neural oscillators , 1992, Biological Cybernetics.

[40]  István Hernádi,et al.  EEG Early Evoked Gamma-Band Synchronization Reflects Object Recognition in Visual Oddball Tasks , 2003, Brain Topography.

[41]  Daniel Senkowski,et al.  Multisensory processing and oscillatory gamma responses: effects of spatial selective attention , 2005, Experimental Brain Research.

[42]  Matthias M. Müller,et al.  Brain electrical tomography (BET) analysis of induced gamma band responses during a simple object recognition task , 2006, NeuroImage.