Analysis and control of the dynamical response of a higher order drifting oscillator

This paper studies a position feedback control strategy for controlling a higher order drifting oscillator which could be used in modelling vibro-impact drilling. Special attention is given to two control issues, eliminating bistability and suppressing chaos, which may cause inefficient and unstable drilling. Numerical continuation methods implemented via the continuation platform COCO are adopted to investigate the dynamical response of the system. Our analyses show that the proposed controller is capable of eliminating coexisting attractors and mitigating chaotic behaviour of the system, providing that its feedback control gain is chosen properly. Our investigations also reveal that, when the slider’s property modelling the drilled formation changes, the rate of penetration for the controlled drilling can be significantly improved.

[1]  Y. Kuznetsov Elements of applied bifurcation theory (2nd ed.) , 1998 .

[2]  Yang Liu,et al.  Intermittent control of coexisting attractors , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[3]  José Manoel Balthazar,et al.  CONTROL AND CHAOS FOR VIBRO-IMPACT AND NON-IDEAL OSCILLATORS , 2008 .

[4]  Iberê L. Caldas,et al.  Controlling chaotic orbits in mechanical systems with impacts , 2004 .

[5]  Mario di Bernardo,et al.  Bifurcations in Nonsmooth Dynamical Systems , 2008, SIAM Rev..

[6]  Ekaterina Pavlovskaia,et al.  Vibro-impact responses of capsule system with various friction models , 2013 .

[7]  G. W. Luo,et al.  Controlling bifurcation and chaos of a plastic impact oscillator , 2009 .

[8]  Ekaterina Pavlovskaia,et al.  Invisible grazings and dangerous bifurcations in impacting systems: the problem of narrow-band chaos. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Rhb Rob Fey,et al.  Impulsive Steering Between Coexisting Stable Periodic Solutions With an Application to Vibrating Plates , 2017 .

[10]  Marian Wiercigroch,et al.  Modelling of vibro-impact system driven by beat frequency , 2003 .

[11]  Frank Schilder,et al.  An Extended Continuation Problem for Bifurcation Analysis in the Presence of Constraints , 2010, Journal of Computational and Nonlinear Dynamics.

[12]  Ekaterina Pavlovskaia,et al.  Modelling of Ground Moling Dynamics by an Impact Oscillator with a Frictional Slider , 2003 .

[13]  Hussain Rabia,et al.  A unified prediction model for percussive and rotary drilling , 1985 .

[14]  G. R. Samuel,et al.  Percussion Drilling...Is It a Lost Technique? A Review. , 1996 .

[15]  Alfred Rotimi Akisanya,et al.  Global and local dynamics of drifting oscillator for different contact force models , 2010 .

[16]  G.L. Cavanough,et al.  A Self-Optimizing Control System for Hard Rock Percussive Drilling , 2008, IEEE/ASME Transactions on Mechatronics.

[17]  Marian Wiercigroch,et al.  Bifurcation analysis of periodic orbits of a non-smooth Jeffcott rotor model , 2013, Commun. Nonlinear Sci. Numer. Simul..

[18]  C Grebogi,et al.  Modeling of an impact system with a drift. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  H. Dankowicz,et al.  Control of near-grazing dynamics in impact oscillators , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  Ekaterina Pavlovskaia,et al.  Analytical drift reconstruction for visco-elastic impact oscillators operating in periodic and chaotic regimes , 2004 .

[21]  Konstantin Turitsyn,et al.  Robust and adaptive control of coexisting attractors in nonlinear vibratory energy harvesters , 2018 .

[22]  Van-Du Nguyen,et al.  Experimental study and mathematical modelling of a new of vibro-impact moling device , 2008 .

[23]  Marian Wiercigroch,et al.  Modelling of high frequency vibro-impact drilling , 2015 .

[24]  Joseph Páez Chávez,et al.  Controlling multistability in a vibro-impact capsule system , 2017 .

[25]  Ekaterina Pavlovskaia,et al.  Bifurcation analysis of an impact oscillator with a one-sided elastic constraint near grazing , 2010 .

[26]  Ekaterina Pavlovskaia,et al.  Forward and backward motion control of a vibro-impact capsule system. , 2015 .

[27]  Marian Wiercigroch,et al.  Bifurcations and the penetrating rate analysis of a model for percussive drilling , 2010 .

[28]  H. I. Weber,et al.  Mathematical modeling and experimental investigation of an embedded vibro-impact system , 2011 .

[29]  Ricardo L. Viana,et al.  Damping control law for a chaotic impact oscillator , 2007 .

[30]  L. Guskova A control method. , 1967 .

[31]  Yang Liu,et al.  Controlling coexisting attractors of an impacting system via linear augmentation , 2017 .

[32]  Y. Kuznetsov Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.

[33]  Frank Schilder,et al.  Recipes for Continuation , 2013, Computational science and engineering.

[34]  Joseph Páez Chávez,et al.  Bifurcation analysis of a piecewise-linear impact oscillator with drift , 2014 .

[35]  Ekaterina Pavlovskaia,et al.  Periodic solution finder for an impact oscillator with a drift , 2003 .

[36]  G. Luo,et al.  Dynamics of a plastic-impact system with oscillatory and progressive motions , 2008 .

[37]  Ekaterina Pavlovskaia,et al.  Experimental study of impact oscillator with one-sided elastic constraint , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.