Testing the number of components in a normal mixture

We demonstrate that, under a theorem proposed by Vuong, the likelihood ratio statistic based on the Kullback-Leibler information criterion of the null hypothesis that a random sample is drawn from a k 0 -component normal mixture distribution against the alternative hypothesis that the sample is drawn from a k 1 -component normal mixture distribution is asymptotically distributed as a weighted sum of independent chi-squared random variables with one degree of freedom, under general regularity conditions. We report simulation studies of two cases where we are testing a single normal versus a two-component normal mixture and a two-component normal mixture versus a three-component normal mixture. An empirical adjustment to the likelihood ratio statistic is proposed that appears to improve the rate of convergence to the limiting distribution.