Assessment of Sentinel-1A data for rice crop classification using random forests and support vector machines

Abstract This study developed an approach to map rice-cropping systems in An Giang and Dong Thap provinces, South Vietnam using multi-temporal Sentinel-1A (S1A) data. The data were processed through four steps: (1) data pre-processing, (2) constructing smooth time series VH backscatter data, (3) rice crop classification using random forests (RF) and support vector machines (SVM) and (4) accuracy assessment. The results indicated that the smooth VH backscatter profiles reflected the temporal characteristics of rice-cropping patterns in the study region. The comparisons between the classification results and the ground reference data indicated that the overall accuracy and Kappa coefficient achieved from RF were 86.1% and 0.72, respectively, which were slightly more accurate than SVM (overall accuracy of 83.4% and Kappa coefficient of 0.67). These results were reaffirmed by the government’s rice area statistics with the relative error in area (REA) values of 0.2 and 2.2% for RF and SVM, respectively.

[1]  T. Sakamoto,et al.  A crop phenology detection method using time-series MODIS data , 2005 .

[2]  Onisimo Mutanga,et al.  A comparison of regression tree ensembles: Predicting Sirex noctilio induced water stress in Pinus patula forests of KwaZulu-Natal, South Africa , 2010, Int. J. Appl. Earth Obs. Geoinformation.

[3]  Jonathan Cheung-Wai Chan,et al.  An evaluation of ensemble classifiers for mapping Natura 2000 heathland in Belgium using spaceborne angular hyperspectral (CHRIS/Proba) imagery , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[4]  Heather McNairn,et al.  Integration of optical and Synthetic Aperture Radar (SAR) imagery for delivering operational annual crop inventories , 2009 .

[5]  L. S. Davis,et al.  An assessment of support vector machines for land cover classi(cid:142) cation , 2002 .

[6]  Mariana Belgiu,et al.  Random forest in remote sensing: A review of applications and future directions , 2016 .

[7]  Thuy Le Toan,et al.  Rice Mapping and Monitoring Using ENVISAT ASAR Data , 2008, IEEE Geoscience and Remote Sensing Letters.

[8]  M. Chakraborty,et al.  Rice crop parameter retrieval using multi-temporal, multi-incidence angle Radarsat SAR data , 2005 .

[9]  Thomas Blaschke,et al.  Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms , 2010, Int. J. Appl. Earth Obs. Geoinformation.

[10]  R. G. Oderwald,et al.  Assessing Landsat classification accuracy using discrete multivariate analysis statistical techniques. , 1983 .

[11]  Jonathan Cheung-Wai Chan,et al.  Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery , 2008 .

[12]  Sushma Panigrahy,et al.  Comparative evaluation of the sensitivity of multi‐polarized multi‐frequency SAR backscatter to plant density , 2006 .

[13]  P. Gessler,et al.  The multispectral separability of Costa Rican rainforest types with support vector machines and Random Forest decision trees , 2010 .

[14]  J. Franklin,et al.  The elements of statistical learning: data mining, inference and prediction , 2005 .

[15]  Chi-Farn Chen,et al.  A Phenology-Based Classification of Time-Series MODIS Data for Rice Crop Monitoring in Mekong Delta, Vietnam , 2013, Remote. Sens..

[16]  André Stumpf,et al.  Object-oriented mapping of landslides using Random Forests , 2011 .

[17]  Alexandre Bouvet,et al.  Monitoring of the Rice Cropping System in the Mekong Delta Using ENVISAT/ASAR Dual Polarization Data , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Xiaohong Chen,et al.  Flood hazard risk assessment model based on random forest , 2015 .

[19]  Aniruddha Ghosh,et al.  A framework for mapping tree species combining hyperspectral and LiDAR data: Role of selected classifiers and sensor across three spatial scales , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[20]  Lorenzo Bruzzone,et al.  Kernel-based methods for hyperspectral image classification , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Chi-Farn Chen,et al.  Wavelet filtering of time-series moderate resolution imaging spectroradiometer data for rice crop mapping using support vector machines and maximum likelihood classifier , 2011 .

[22]  J. Pereira,et al.  Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest , 2012 .

[23]  Paul M. Mather,et al.  Support vector machines for classification in remote sensing , 2005 .

[24]  Joydeep Ghosh,et al.  Investigation of the random forest framework for classification of hyperspectral data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Taskin Kavzoglu,et al.  A kernel functions analysis for support vector machines for land cover classification , 2009, Int. J. Appl. Earth Obs. Geoinformation.

[26]  Paul M. Mather,et al.  Assessment of the effectiveness of support vector machines for hyperspectral data , 2004, Future Gener. Comput. Syst..

[27]  Fawwaz T. Ulaby,et al.  Relating the microwave backscattering coefficient to leaf area index , 1984 .

[28]  Chih-Jen Lin,et al.  Asymptotic Behaviors of Support Vector Machines with Gaussian Kernel , 2003, Neural Computation.

[29]  C. Torrence,et al.  A Practical Guide to Wavelet Analysis. , 1998 .

[30]  R. Sundaram A First Course in Optimization Theory: Bibliography , 1996 .

[31]  Jungho Im,et al.  Detection of Convective Initiation Using Meteorological Imager Onboard Communication, Ocean, and Meteorological Satellite Based on Machine Learning Approaches , 2015, Remote. Sens..

[32]  David W. Armitage,et al.  A comparison of supervised learning techniques in the classification of bat echolocation calls , 2010, Ecol. Informatics.

[33]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[34]  J. C. Dunn,et al.  A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters , 1973 .

[35]  Pawan Kumar Joshi,et al.  Random forest classification of urban landscape using Landsat archive and ancillary data: Combining seasonal maps with decision level fusion , 2014 .

[36]  Alexandre Bouvet,et al.  Effects of changing rice cultural practices on C-band synthetic aperture radar backscatter using Envisat advanced synthetic aperture radar data in the Mekong River Delta , 2009 .

[37]  M. Gilabert,et al.  Vegetation dynamics from NDVI time series analysis using the wavelet transform , 2009 .

[38]  Michele Dalponte,et al.  Tree Species Classification in Boreal Forests With Hyperspectral Data , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[39]  Kenichi Tatsumi,et al.  Crop classification of upland fields using Random forest of time-series Landsat 7 ETM+ data , 2015, Comput. Electron. Agric..

[40]  J. Mustard,et al.  Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil , 2008 .

[41]  Su-Wei Huang,et al.  Mapping double-cropped irrigated rice fields in Taiwan using time-series Satellite Pour I'Observation de la Terre data , 2011 .

[42]  Onisimo Mutanga,et al.  Detecting Sirex noctilio grey-attacked and lightning-struck pine trees using airborne hyperspectral data, random forest and support vector machines classifiers , 2014 .

[43]  Russell G. Congalton,et al.  Assessing the accuracy of remotely sensed data : principles and practices , 1998 .

[44]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[45]  Barry Haack,et al.  A Comparison of Land Use/Cover Mapping with Varied Radar Incident Angles and Seasons , 2007 .

[46]  Bo Zhang,et al.  Rice Crop Monitoring in South China With RADARSAT-2 Quad-Polarization SAR Data , 2011, IEEE Geoscience and Remote Sensing Letters.

[47]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[48]  Laurie A. Chisholm,et al.  Classification of Australian Native Forest Species Using Hyperspectral Remote Sensing and Machine-Learning Classification Algorithms , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[49]  P. Atkinson,et al.  Random Forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture , 2012 .

[50]  Takashi Kurosu,et al.  The identification of rice fields using multi-temporal ERS-1 C band SAR data , 1997 .

[51]  Mahesh Pal,et al.  Random forest classifier for remote sensing classification , 2005 .

[52]  Aniruddha Ghosh,et al.  A comparison of selected classification algorithms for mapping bamboo patches in lower Gangetic plains using very high resolution WorldView 2 imagery , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[53]  André Stumpf,et al.  bject-oriented mapping of urban trees using Random Forest lassifiers , 2013 .

[54]  Lihong Su,et al.  Optimizing support vector machine learning for semi-arid vegetation mapping by using clustering analysis , 2009 .

[55]  Steven E. Franklin,et al.  Multi-scale object-based image analysis and feature selection of multi-sensor earth observation imagery using random forests , 2012 .

[56]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.