Approximate Controllability, Exact Controllability, and Conical Eigenvalue Intersections for Quantum Mechanical Systems
暂无分享,去创建一个
Jean-Paul Gauthier | Francesco Rossi | Mario Sigalotti | Ugo Boscain | J. Gauthier | U. Boscain | Francesco Rossi | M. Sigalotti
[1] David L. Elliott,et al. Geometric control theory , 2000, IEEE Trans. Autom. Control..
[2] P. A. Smith. Everywhere dense subgroups of Lie groups , 1942 .
[3] Roger W. Brockett,et al. Finite Controllability of Infinite-Dimensional Quantum Systems , 2010, IEEE Transactions on Automatic Control.
[4] Karine Beauchard,et al. Semi-global weak stabilization of bilinear Schrödinger equations , 2010 .
[5] V. Fock,et al. Beweis des Adiabatensatzes , 1928 .
[6] Jean-Paul Gauthier,et al. Hypoelliptic Diffusion and Human Vision: A Semidiscrete New Twist , 2014, SIAM J. Imaging Sci..
[7] M. Slemrod,et al. Controllability of distributed bilinear systems , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.
[8] J. Dixmier. Les C*-algèbres et leurs représentations .. , 1964 .
[9] Michael Keyl,et al. Controlling several atoms in a cavity , 2014, 1401.5722.
[10] Stefan Teufel,et al. Adiabatic perturbation theory in quantum dynamics , 2003 .
[11] R. Streater. Theory of Group Representations and Applications , 1978 .
[12] Maxim Raginsky,et al. Quantum system identification , 2003, 2003 IEEE International Workshop on Workload Characterization (IEEE Cat. No.03EX775).
[13] André Weil,et al. L'integration dans les groupes topologiques et ses applications , 1951 .
[14] Karine Beauchard,et al. Local controllability of a 1-D Schrödinger equation , 2005 .
[15] Velimir Jurdjevic,et al. Control systems on semi-simple Lie groups and their homogeneous spaces , 1981 .
[16] Reinhard Illner,et al. Limitations on the control of Schrödinger equations , 2006 .
[17] D. D’Alessandro. Introduction to Quantum Control and Dynamics , 2007 .
[18] Domenico D'Alessandro,et al. Notions of controllability for bilinear multilevel quantum systems , 2003, IEEE Trans. Autom. Control..
[19] Mario Sigalotti,et al. Controllability of the discrete-spectrum Schrödinger equation driven by an external field , 2008, 0801.4893.
[20] Seth Lloyd,et al. Controllability of the coupled spin- 1 2 harmonic oscillator system , 2007, 0705.1055.
[21] U. Boscain,et al. Controllability of the Schrödinger Equation via Intersection of Eigenvalues , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.
[22] Hayk Nersisyan,et al. Global exact controllability in infinite time of Schrödinger equation: multidimensional case , 2012, 1201.3445.
[23] Mario Sigalotti,et al. A Weak Spectral Condition for the Controllability of the Bilinear Schrödinger Equation with Application to the Control of a Rotating Planar Molecule , 2011, ArXiv.
[24] Thomas Chambrion,et al. Periodic excitations of bilinear quantum systems , 2011, Autom..
[25] Mazyar Mirrahimi,et al. Lyapunov control of a quantum particle in a decaying potential , 2008, 0805.0910.
[26] M. Dupuis,et al. Prospective study on microscopic potential with Gogny interaction , 2015, 1504.05817.
[27] Nabile Boussaid,et al. Weakly Coupled Systems in Quantum Control , 2011, IEEE Transactions on Automatic Control.
[28] Karine Beauchard,et al. Local controllability of 1D linear and nonlinear Schr , 2010, 1001.3288.
[29] SUBSEMIGROUPS OF SEMISIMPLE LIE GROUPS , 2015 .
[30] Karine Beauchard,et al. Controllability of a quantum particle in a moving potential well , 2006 .
[31] 乔花玲,et al. 关于Semigroups of Linear Operators and Applications to Partial Differential Equations的两个注解 , 2003 .
[32] J. Hilgert,et al. Lie groups, convex cones, and semigroups , 1989 .
[33] Vahagn Nersesyan,et al. Global approximate controllability for Schr\"odinger equation in higher Sobolev norms and applications , 2009, 0905.2438.
[34] C. Rangan,et al. The controllability of infinite quantum systems , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).
[35] Gabriel Turinici,et al. On the controllability of bilinear quantum systems , 2000 .
[36] J. Gauthier,et al. Hypoelliptic diffusion and human vision: a semi-discrete new twist on the Petitot theory , 2013 .
[37] Mario Sigalotti,et al. Fe b 20 13 Multi-input Schrödinger equation : controllability , tracking , and application to the quantum angular momentum ∗ , 2013 .
[38] Law,et al. Arbitrary control of a quantum electromagnetic field. , 1996, Physical review letters.
[39] Bruce W. Shore,et al. The Theory of Coherent Atomic Excitation , 1991 .
[40] H. Jauslin,et al. Control of Quantum Dynamics by Laser Pulses: Adiabatic Floquet Theory , 2003 .
[41] R. Brockett. Lie Theory and Control Systems Defined on Spheres , 1973 .
[42] Andrew D. Greentree,et al. Identifying an experimental two-state Hamiltonian to arbitrary accuracy (11 pages) , 2005 .
[43] B. Shore. The Theory of Coherent Atomic Excitation, Volume 2, Multilevel Atoms and Incoherence , 1990 .
[44] J. Neumann,et al. Uber merkwürdige diskrete Eigenwerte. Uber das Verhalten von Eigenwerten bei adiabatischen Prozessen , 1929 .
[45] J. Gauthier,et al. Optimal control in laser-induced population transfer for two- and three-level quantum systems , 2002 .
[46] Francesca C. Chittaro,et al. Adiabatic Control of the Schrödinger Equation via Conical Intersections of the Eigenvalues , 2011, IEEE Transactions on Automatic Control.
[47] P. Krishnaprasad,et al. Control Systems on Lie Groups , 2005 .
[48] Pierre Rouchon,et al. Hamiltonian Identification Through Enhanced Observability Utilizing Quantum Control , 2011, IEEE Transactions on Automatic Control.
[49] Sylvain Ervedoza,et al. Approximate Controllability for a System of Schrödinger Equations Modeling a Single Trapped Ion , 2009 .
[50] Franz Rellich,et al. Perturbation Theory of Eigenvalue Problems , 1969 .
[51] Claude Le Bris,et al. Mathematical models and methods for ab initio quantum chemistry , 2000 .
[52] Riccardo Adami,et al. Controllability of the Schrödinger Equation via Intersection of Eigenvalues , 2005 .