Approximate Controllability, Exact Controllability, and Conical Eigenvalue Intersections for Quantum Mechanical Systems

We study the controllability of a closed control-affine quantum system driven by two or more external fields. We provide a sufficient condition for controllability in terms of existence of conical intersections between eigenvalues of the Hamiltonian in dependence of the controls seen as parameters. Such spectral condition is structurally stable in the case of three controls or in the case of two controls when the Hamiltonian is real. The spectral condition appears naturally in the adiabatic control framework and yields approximate controllability in the infinite-dimensional case. In the finite-dimensional case it implies that the system is Lie-bracket generating when lifted to the group of unitary transformations, and in particular that it is exactly controllable. Hence, Lie algebraic conditions are deduced from purely spectral properties. We conclude the article by proving that approximate and exact controllability are equivalent properties for general finite-dimensional quantum systems.

[1]  David L. Elliott,et al.  Geometric control theory , 2000, IEEE Trans. Autom. Control..

[2]  P. A. Smith Everywhere dense subgroups of Lie groups , 1942 .

[3]  Roger W. Brockett,et al.  Finite Controllability of Infinite-Dimensional Quantum Systems , 2010, IEEE Transactions on Automatic Control.

[4]  Karine Beauchard,et al.  Semi-global weak stabilization of bilinear Schrödinger equations , 2010 .

[5]  V. Fock,et al.  Beweis des Adiabatensatzes , 1928 .

[6]  Jean-Paul Gauthier,et al.  Hypoelliptic Diffusion and Human Vision: A Semidiscrete New Twist , 2014, SIAM J. Imaging Sci..

[7]  M. Slemrod,et al.  Controllability of distributed bilinear systems , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[8]  J. Dixmier Les C*-algèbres et leurs représentations .. , 1964 .

[9]  Michael Keyl,et al.  Controlling several atoms in a cavity , 2014, 1401.5722.

[10]  Stefan Teufel,et al.  Adiabatic perturbation theory in quantum dynamics , 2003 .

[11]  R. Streater Theory of Group Representations and Applications , 1978 .

[12]  Maxim Raginsky,et al.  Quantum system identification , 2003, 2003 IEEE International Workshop on Workload Characterization (IEEE Cat. No.03EX775).

[13]  André Weil,et al.  L'integration dans les groupes topologiques et ses applications , 1951 .

[14]  Karine Beauchard,et al.  Local controllability of a 1-D Schrödinger equation , 2005 .

[15]  Velimir Jurdjevic,et al.  Control systems on semi-simple Lie groups and their homogeneous spaces , 1981 .

[16]  Reinhard Illner,et al.  Limitations on the control of Schrödinger equations , 2006 .

[17]  D. D’Alessandro Introduction to Quantum Control and Dynamics , 2007 .

[18]  Domenico D'Alessandro,et al.  Notions of controllability for bilinear multilevel quantum systems , 2003, IEEE Trans. Autom. Control..

[19]  Mario Sigalotti,et al.  Controllability of the discrete-spectrum Schrödinger equation driven by an external field , 2008, 0801.4893.

[20]  Seth Lloyd,et al.  Controllability of the coupled spin- 1 2 harmonic oscillator system , 2007, 0705.1055.

[21]  U. Boscain,et al.  Controllability of the Schrödinger Equation via Intersection of Eigenvalues , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[22]  Hayk Nersisyan,et al.  Global exact controllability in infinite time of Schrödinger equation: multidimensional case , 2012, 1201.3445.

[23]  Mario Sigalotti,et al.  A Weak Spectral Condition for the Controllability of the Bilinear Schrödinger Equation with Application to the Control of a Rotating Planar Molecule , 2011, ArXiv.

[24]  Thomas Chambrion,et al.  Periodic excitations of bilinear quantum systems , 2011, Autom..

[25]  Mazyar Mirrahimi,et al.  Lyapunov control of a quantum particle in a decaying potential , 2008, 0805.0910.

[26]  M. Dupuis,et al.  Prospective study on microscopic potential with Gogny interaction , 2015, 1504.05817.

[27]  Nabile Boussaid,et al.  Weakly Coupled Systems in Quantum Control , 2011, IEEE Transactions on Automatic Control.

[28]  Karine Beauchard,et al.  Local controllability of 1D linear and nonlinear Schr , 2010, 1001.3288.

[29]  SUBSEMIGROUPS OF SEMISIMPLE LIE GROUPS , 2015 .

[30]  Karine Beauchard,et al.  Controllability of a quantum particle in a moving potential well , 2006 .

[31]  乔花玲,et al.  关于Semigroups of Linear Operators and Applications to Partial Differential Equations的两个注解 , 2003 .

[32]  J. Hilgert,et al.  Lie groups, convex cones, and semigroups , 1989 .

[33]  Vahagn Nersesyan,et al.  Global approximate controllability for Schr\"odinger equation in higher Sobolev norms and applications , 2009, 0905.2438.

[34]  C. Rangan,et al.  The controllability of infinite quantum systems , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[35]  Gabriel Turinici,et al.  On the controllability of bilinear quantum systems , 2000 .

[36]  J. Gauthier,et al.  Hypoelliptic diffusion and human vision: a semi-discrete new twist on the Petitot theory , 2013 .

[37]  Mario Sigalotti,et al.  Fe b 20 13 Multi-input Schrödinger equation : controllability , tracking , and application to the quantum angular momentum ∗ , 2013 .

[38]  Law,et al.  Arbitrary control of a quantum electromagnetic field. , 1996, Physical review letters.

[39]  Bruce W. Shore,et al.  The Theory of Coherent Atomic Excitation , 1991 .

[40]  H. Jauslin,et al.  Control of Quantum Dynamics by Laser Pulses: Adiabatic Floquet Theory , 2003 .

[41]  R. Brockett Lie Theory and Control Systems Defined on Spheres , 1973 .

[42]  Andrew D. Greentree,et al.  Identifying an experimental two-state Hamiltonian to arbitrary accuracy (11 pages) , 2005 .

[43]  B. Shore The Theory of Coherent Atomic Excitation, Volume 2, Multilevel Atoms and Incoherence , 1990 .

[44]  J. Neumann,et al.  Uber merkwürdige diskrete Eigenwerte. Uber das Verhalten von Eigenwerten bei adiabatischen Prozessen , 1929 .

[45]  J. Gauthier,et al.  Optimal control in laser-induced population transfer for two- and three-level quantum systems , 2002 .

[46]  Francesca C. Chittaro,et al.  Adiabatic Control of the Schrödinger Equation via Conical Intersections of the Eigenvalues , 2011, IEEE Transactions on Automatic Control.

[47]  P. Krishnaprasad,et al.  Control Systems on Lie Groups , 2005 .

[48]  Pierre Rouchon,et al.  Hamiltonian Identification Through Enhanced Observability Utilizing Quantum Control , 2011, IEEE Transactions on Automatic Control.

[49]  Sylvain Ervedoza,et al.  Approximate Controllability for a System of Schrödinger Equations Modeling a Single Trapped Ion , 2009 .

[50]  Franz Rellich,et al.  Perturbation Theory of Eigenvalue Problems , 1969 .

[51]  Claude Le Bris,et al.  Mathematical models and methods for ab initio quantum chemistry , 2000 .

[52]  Riccardo Adami,et al.  Controllability of the Schrödinger Equation via Intersection of Eigenvalues , 2005 .