Linking interstellar and cometary O2: a deep search for 16O18O in the solar-type protostar IRAS 16293–2422

Recent measurements carried out at comet 67P/Churyumov–Gerasimenko (67P) with the Rosetta probe revealed that molecular oxygen, O2, is the fourth most abundant molecule in comets. Models show that O2 is likely of primordial nature, coming from the interstellar cloud from which our solar system was formed. However, gaseous O2 is an elusive molecule in the interstellar medium with only one detection towards quiescent molecular clouds, in the ρ Oph A core. We perform a deep search for molecular oxygen, through the 21−01 rotational transition at 234 GHz of its 16O18O isotopologue, towards the warm compact gas surrounding the nearby Class 0 protostar IRAS 16293–2422 B with the ALMA interferometer. We also look for the chemical daughters of O2, HO2, and H2O2. Unfortunately, the H2O2 rotational transition is dominated by ethylene oxide c-C2H4O while HO2 is not detected. The targeted 16O18O transition is surrounded by two brighter transitions at ± 1 km s−1 relative to the expected 16O18O transition frequency. After subtraction of these two transitions, residual emission at a 3σ level remains, but with a velocity offset of 0.3−0.5 km s−1 relative to the source velocity, rendering the detection “tentative”. We derive the O2 column density for two excitation temperatures Tex of 125 and 300 K, as indicated by other molecules, in order to compare the O2 abundance between IRAS 16293 and comet 67P. Assuming that 16O18O is not detected and using methanol CH3OH as a reference species, we obtain a [O2]/[CH3OH] abundance ratio lower than 2−5, depending on the assumed Tex, a three to four times lower abundance than the [O2]/[CH3OH] ratio of 5−15 found in comet 67P. Such a low O2 abundance could be explained by the lower temperature of the dense cloud precursor of IRAS 16293 with respect to the one at the origin of our solar system that prevented efficient formation of O2 in interstellar ices.

[1]  E. Dishoeck,et al.  The ALMA-PILS survey: isotopic composition of oxygen-containing complex organic molecules toward IRAS 16293–2422B , 2018, Astronomy & Astrophysics.

[2]  K. Menten,et al.  A revised distance to IRAS 16293-2422 from VLBA astrometry of associated water masers , 2018, Astronomy & Astrophysics.

[3]  E. Dishoeck,et al.  The ALMA-PILS survey: the sulphur connection between protostars and comets: IRAS 16293-2422 B and 67P/Churyumov-Gerasimenko , 2018, 1802.02977.

[4]  R. Garrod,et al.  First detection of cyanamide (NH2CN) towards solar-type protostars , 2017, 1712.09548.

[5]  C. Brinch,et al.  The ALMA-PILS survey: 3D modeling of the envelope, disks and dust filament of IRAS 16293-2422 , 2017, 1712.06984.

[6]  E. Dishoeck,et al.  The ALMA-PILS survey: Formaldehyde deuteration in warm gas on small scales toward IRAS 16293-2422 B , 2017, 1711.05736.

[7]  R. Garrod,et al.  Protostellar and cometary detections of organohalogens , 2017, Nature Astronomy.

[8]  E. Bergin,et al.  The complexity of Orion: An ALMA view: I. Data and first results , 2017 .

[9]  Eric Schindhelm,et al.  H 2 O and O 2 absorption in the coma of comet 67P/Churyumov-Gerasimenko measured by the Alice far-ultraviolet spectrograph on Rosetta , 2017, 1706.01948.

[10]  R. Garrod,et al.  The ALMA-PILS survey: detection of CH3NCO towards the low-mass protostar IRAS 16293−2422 and laboratory constraints on its formation , 2017, 1703.03252.

[11]  J. Cernicharo,et al.  Laboratory detection of the rotational-tunnelling spectrum of the hydroxymethyl radical, CH2OH , 2017 .

[12]  R. Garrod,et al.  The ALMA-PILS survey: First detections of ethylene oxide, acetone and propanal toward the low-mass protostar IRAS 16293-2422 , 2016, 1611.07314.

[13]  L. Hartmann,et al.  THE GOULD’S BELT DISTANCES SURVEY (GOBELINS). I. TRIGONOMETRIC PARALLAX DISTANCES AND DEPTH OF THE OPHIUCHUS COMPLEX , 2016, 1611.06466.

[14]  C. Walsh,et al.  A primordial origin for molecular oxygen in comets: a chemical kinetics study of the formation and survival of O2 ice from clouds to discs , 2016, 1608.07130.

[15]  R. Garrod,et al.  The ALMA Protostellar Interferometric Line Survey (PILS) , 2016, 1607.08733.

[16]  R. Garrod,et al.  The ALMA-PILS survey: First detections of deuterated formamide and deuterated isocyanic acid in the interstellar medium , 2016, 1605.02562.

[17]  J. Lunine,et al.  ORIGIN OF MOLECULAR OXYGEN IN COMET 67P/CHURYUMOV–GERASIMENKO , 2016, 1604.08831.

[18]  Stephan Schlemmer,et al.  The Cologne Database for Molecular Spectroscopy, CDMS, in the Virtual Atomic and Molecular Data Centre, VAMDC , 2016, 1603.03264.

[19]  M. Rubin,et al.  MOLECULAR OXYGEN IN OORT CLOUD COMET 1P/HALLEY , 2015, 1512.01653.

[20]  Martin Rubin,et al.  Inventory of the volatiles on comet 67P/Churyumov-Gerasimenko from Rosetta/ROSINA , 2015 .

[21]  J. De Keyser,et al.  Abundant molecular oxygen in the coma of comet 67P/Churyumov–Gerasimenko , 2015, Nature.

[22]  T. Owen,et al.  Molecular nitrogen in comet 67P/Churyumov-Gerasimenko indicates a low formation temperature , 2015, Science.

[23]  T. M. Klapwijk,et al.  The ALMA Band 9 receiver : Design, construction, characterization, and first light , 2015, 1503.01988.

[24]  E. Neefs,et al.  67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio , 2015, Science.

[25]  Adwin Boogert,et al.  Observations of the Icy Universe , 2015, 1501.05317.

[26]  Andrew G. Clark,et al.  Conundrum of jumbled mosquito genomes , 2015, Science.

[27]  P. Caselli,et al.  HERSCHEL HIFI OBSERVATIONS OF O2 TOWARD ORION: SPECIAL CONDITIONS FOR SHOCK ENHANCED EMISSION , 2014, 1408.1962.

[28]  P. Caselli,et al.  Deep observations of O2 toward a low-mass protostar with Herschel-HIFI ,, , 2013, 1307.8031.

[29]  P. Caselli,et al.  Water in star-forming regions with Herschel (WISH) - III. Far-infrared cooling lines in low-mass young stellar objects , 2013, 1301.4821.

[30]  L. Loinard,et al.  ALMA 690 GHz OBSERVATIONS OF IRAS 16293−2422B: INFALL IN A HIGHLY OPTICALLY THICK DISK , 2013, 1301.3105.

[31]  E. Dishoeck,et al.  Warm water deuterium fractionation in IRAS 16293-2422 - the high-resolution ALMA and SMA view , 2012, 1211.6605.

[32]  Tokyo,et al.  The first ALMA view of IRAS 16293-2422: Direct detection of infall onto source B and high-resolution kinematics of source A , 2012, 1206.5215.

[33]  Beijing,et al.  Multi-line detection of O2 toward rho Oph A , 2012, 1202.5637.

[34]  J. Jørgensen,et al.  Arcsecond resolution images of the chemical structure of the low-mass protostar IRAS 16293-2422 - An overview of a large molecular line survey from the Submillimeter Array , 2011, 1109.0415.

[35]  P. Caselli,et al.  HERSCHEL MEASUREMENTS OF MOLECULAR OXYGEN IN ORION , 2011, 1108.0441.

[36]  N. Evans,et al.  THE SPITZER ICE LEGACY: ICE EVOLUTION FROM CORES TO PROTOSTARS , 2011, 1107.5825.

[37]  A. Tielens,et al.  TIMASSS: the IRAS 16293-2422 millimeter and submillimeter spectral survey. I. Observations, calibration, and analysis of the line kinematics , 2011, 1103.5347.

[38]  H. Müller,et al.  Terahertz spectroscopy of oxygen, O2, in its 3Σ−g and 1Δ electronic states: THz Spectroscopy of O2 , 2010 .

[39]  H. Roussel,et al.  From filamentary clouds to prestellar cores to the stellar IMF: Initial highlights from the Herschel Gould Belt survey , 2010, 1005.2618.

[40]  Ipac,et al.  THE c2d SPITZER SPECTROSCOPIC SURVEY OF ICES AROUND LOW-MASS YOUNG STELLAR OBJECTS. IV. NH3 AND CH3OH , 2010, 1005.2225.

[41]  J. Black,et al.  O18O and C18O observations of ρ Ophiuchi A , 2009, 0911.5247.

[42]  S. Sakai,et al.  Astrometry of H2O Masers in Nearby Star-Forming Regions with VERA II SVS 13 in NGC 1333 , 2008 .

[43]  M. Lombardi,et al.  Hipparcos distance estimates of the Ophiuchus and the Lupus cloud complexes , 2008, 0801.3346.

[44]  Robert A. Shaw,et al.  Astronomical data analysis software and systems IV : meeting held at Baltimore, Maryland, 25-28 September 1994 , 1995 .

[45]  P. Bernath,et al.  Molecular oxygen in the ρ Ophiuchi cloud , 2007, astro-ph/0702474.

[46]  D. Jewitt,et al.  Temperature Dependence of the Formation of Hydrogen, Oxygen, and Hydrogen Peroxide in Electron-Irradiated Crystalline Water Ice , 2006 .

[47]  C. Dullemond,et al.  Protostellar Holes: Spitzer Space Telescope Observations of the Protostellar Binary IRAS 16293–2422 , 2005, astro-ph/0508210.

[48]  C. Brogan,et al.  IRAS 16293–2422: Proper Motions, Jet Precession, the Hot Core, and the Unambiguous Detection of Infall , 2005, astro-ph/0506435.

[49]  Holger S. P. Müller,et al.  The Cologne Database for Molecular Spectroscopy, CDMS: a useful tool for astronomers and spectroscopists , 2005 .

[50]  E. Dartois,et al.  Mapping ices in protostellar environments on 1000 AU scales - Methanol-rich ice in the envelope of Serpens SMM 4 , 2004, astro-ph/0407316.

[51]  Lee G. Mundy,et al.  Unveiling the Circumstellar Envelope and Disk: A Subarcsecond Survey of Circumstellar Structures , 1999, astro-ph/9908301.

[52]  P. Goldsmith,et al.  Detection of Methanol in a Class 0 Protostellar Disk , 1999 .

[53]  K. Chance,et al.  Far-Infrared Spectrum of HO2 , 1995 .

[54]  T. Goyette,et al.  Millimeter/Submillimeter-Wave Spectrum of the First Excited Torsional State in HOOH , 1995 .

[55]  T. Wilson,et al.  Abundances in the interstellar medium , 1992 .

[56]  A. Tielens,et al.  Interstellar solid CO: polar and nonpolar interstellar ices. , 1991, The Astrophysical journal.

[57]  H. Müller,et al.  Submillimeter, millimeter, and microwave spectral line catalog. , 1985, Applied optics.

[58]  P. V. Bout,et al.  Upper limits on the O2/CO ratio in two dense interstellar clouds , 1985 .

[59]  F. Schloerb,et al.  Search for molecular oxygen in dense interstellar clouds. , 1985, The Astrophysical journal.

[60]  D. Bockelée-Morvan,et al.  Production of O 2 through dismutation of H 2 O 2 during water ice desorption: a key to understanding comet O 2 abundances , 2017 .