Potential-reduction methods in mathematical programming

We provide a survey of interior-point methods for linear programming and its extensions that are based on reducing a suitable potential function at each iteration. We give a fairly complete overview of potential-reduction methods for linear programming, focusing on the possibility of taking long steps and the properties of the barrier function that are necessary for the analysis. We then describe briefly how the methods and results can be extended to certain convex programming problems, following the approach of Nesterov and Todd. We conclude with some open problems.

[1]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[2]  Kunio Tanabe,et al.  Centered newton method for mathematical programming , 1988 .

[3]  Hiroshi Imai,et al.  On the convexity of the multiplicative version of Karmarkar's potential function , 1988, Math. Program..

[4]  Kurt M. Anstreicher,et al.  A combined phase I-phase II projective algorithm for linear programming , 1989, Math. Program..

[5]  Michael J. Todd,et al.  A Centered Projective Algorithm for Linear Programming , 1990, Math. Oper. Res..

[6]  Kurt M. Anstreicher,et al.  On the Performance of Karmarkar's Algorithm over a Sequence of Iterations , 1991, SIAM J. Optim..

[7]  Kurt M. Anstreicher,et al.  A combined phase I—phase II scaled potential algorithm for linear programming , 1991, Math. Program..

[8]  Renato D. C. Monteiro,et al.  Convergence and Boundary Behavior of the Projective Scaling Trajectories for Linear Programming , 1991, Math. Oper. Res..

[9]  Robert M. Freund,et al.  Polynomial-time algorithms for linear programming based only on primal scaling and projected gradients of a potential function , 1991, Math. Program..

[10]  Robert M. Freund,et al.  ALGORITHM FOR SOLVING A LINEAR PROGRAM DIRECTLY FROM AN INFEASIBLE "WARM START" , 1991 .

[11]  Yinyu Ye,et al.  An O(n3L) potential reduction algorithm for linear programming , 1991, Math. Program..

[12]  Shinji Mizuno,et al.  An $$O(\sqrt n L)$$ iteration potential reduction algorithm for linear complementarity problems , 1991, Math. Program..

[13]  Clóvis C. Gonzaga,et al.  Large Step Path-Following Methods for Linear Programming, Part II: Potential Reduction Method , 1991, SIAM J. Optim..

[14]  S. Mizuno O(nρL)-iteration and O(n3L)-operation potential reduction algorithms for linear programming , 1991 .

[15]  Clóvis C. Gonzaga,et al.  Polynomial affine algorithms for linear programming , 1990, Math. Program..

[16]  Jeffrey C. Lagarias,et al.  Karmarkar's linear programming algorithm and Newton's method , 1991, Math. Program..

[17]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[18]  Clóvis C. Gonzaga,et al.  Path-Following Methods for Linear Programming , 1992, SIAM Rev..

[19]  Yinyu Ye,et al.  A Potential Reduction Algorithm Allowing Column Generation , 1992, SIAM J. Optim..

[20]  Nimrod Megiddo,et al.  An interior point potential reduction algorithm for the linear complementarity problem , 1992, Math. Program..

[21]  Michael J. Todd,et al.  On Anstreicher's combined phase I—phase II projective algorithm for linear programming , 1992, Math. Program..

[22]  Kurt M. Anstreicher,et al.  On interior algorithms for linear programming with no regularity assumptions , 1992, Oper. Res. Lett..

[23]  Michael J. Todd,et al.  Combining phase I and phase II in a potential reduction algorithm for linear programming , 1993, Math. Program..

[24]  M. J. D. Powell,et al.  On the number of iterations of Karmarkar's algorithm for linear programming , 1993, Math. Program..

[25]  Shinji Mizuno,et al.  A primal—dual affine-scaling potential-reduction algorithm for linear programming , 1993, Math. Program..

[26]  S. Huang,et al.  Near boundary behavior of primal—dual potential reduction algorithms for linear programming , 1993, Math. Program..

[27]  Roy E. Marsten,et al.  Feature Article - Interior Point Methods for Linear Programming: Computational State of the Art , 1994, INFORMS J. Comput..

[28]  Yinyu Ye,et al.  A Complexity Analysis for Interior-Point Algorithms Based on Karmarkar's Potential Function , 1994, SIAM J. Optim..

[29]  Kevin A. McShane Superlinearly Convergent O(√(n) L)-Iteration Interior-Point Algorithms for Linear Programming and the Monotone Linear Complementarity Problem , 1994, SIAM J. Optim..

[30]  Levent Tunçel,et al.  Constant potential primal—dual algorithms: A framework , 1994, Math. Program..

[31]  Shinji Mizuno,et al.  An O(√nL)-Iteration Homogeneous and Self-Dual Linear Programming Algorithm , 1994, Math. Oper. Res..

[32]  Stephen J. Wright,et al.  Superlinear primal-dual affine scaling algorithms for LCP , 1995, Math. Program..

[33]  Shinji Mizuno,et al.  Infeasible-Interior-Point Primal-Dual Potential-Reduction Algorithms for Linear Programming , 1995, SIAM J. Optim..

[34]  Osman Güler,et al.  Barrier Functions in Interior Point Methods , 1996, Math. Oper. Res..

[35]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[36]  Michael J. Todd,et al.  Self-Scaled Barriers and Interior-Point Methods for Convex Programming , 1997, Math. Oper. Res..

[37]  Dimitris Bertsimas,et al.  On the worst case complexity of potential reduction algorithms for linear programming , 1997, Math. Program..

[38]  Michael J. Todd,et al.  Approximate Farkas lemmas and stopping rules for iterative infeasible-point algorithms for linear programming , 1998, Math. Program..

[39]  Michael J. Todd,et al.  Primal-Dual Interior-Point Methods for Self-Scaled Cones , 1998, SIAM J. Optim..