Computational kinetics of cobalt-catalyzed alkene hydroformylation.

Density functional theory, coupled-cluster theory, and transition state theory are used to build a computational model of the kinetics of phosphine-free cobalt-catalyzed hydroformylation and hydrogenation of alkenes. The model provides very good agreement with experiment, and enables the factors that determine the selectivity and rate of catalysis to be determined. The turnover rate is mainly determined by the alkene coordination step.

[1]  W. Green,et al.  New pathways for formation of acids and carbonyl products in low-temperature oxidation: the Korcek decomposition of γ-ketohydroperoxides. , 2013, Journal of the American Chemical Society.

[2]  S. Otto,et al.  Evaluation of ligand effects in the modified cobalt hydroformylation of 1-octene. Crystal structures of [Co(L)(CO)3]2 (L = PA-C5, PCy3 and PCyp3). , 2011, Dalton transactions.

[3]  A. Whitwood,et al.  An NMR study of cobalt-catalyzed hydroformylation using para-hydrogen induced polarisation. , 2009, Dalton transactions.

[4]  J. Zádor,et al.  Kinetics of elementary reactions in low-temperature autoignition chemistry , 2011 .

[5]  G. Frenking,et al.  Theoretical Studies of Some Transition-Metal-Mediated Reactions of Industrial and Synthetic Importance. , 2000, Chemical reviews.

[6]  J. Kestin,et al.  Viscosity of liquid toluene at temperatures from 25 to 150.degree.C and at pressures up to 30 MPa , 1992 .

[7]  H. Adams,et al.  Ligand Effects on Reactivity of Cobalt Acyl Complexes , 2012 .

[8]  John R. Bourne,et al.  Hydroformylation of propylene using an unmodified cobalt carbonyl catalyst: a kinetic study , 1992 .

[9]  Paul M. Murray,et al.  The Newman-Kwart rearrangement of O-aryl thiocarbamates: substantial reduction in reaction temperatures through palladium catalysis. , 2009, Angewandte Chemie.

[10]  P. Kalck,et al.  Cobalt-catalyzed hydroformylation of alkenes: generation and recycling of the carbonyl species, and catalytic cycle. , 2009, Chemical reviews.

[11]  Vidar R. Jensen,et al.  Activity of rhodium-catalyzed hydroformylation: added insight and predictions from theory. , 2007, Journal of the American Chemical Society.

[12]  Haijun Jiao,et al.  HCo(CO)3-Catalyzed Propene Hydroformylation. Insight into Detailed Mechanism , 2003 .

[13]  J. Harvey,et al.  A computational study of phosphine ligand effects in Suzuki-Miyaura coupling , 2010 .

[14]  S. Otto,et al.  Bicyclic phosphines as ligands for cobalt catalysed hydroformylation. Crystal structures of [Co(Phoban[3.3.1]-Q)(CO)3]2 (Q = C2H5, C5H11, C3H6NMe2, C6H11) , 2007 .

[15]  R. J. Klingler,et al.  Thermodynamics for the hydrogenation of dicobalt octacarbonyl in supercritical carbon dioxide , 1992 .

[16]  A. Orpen,et al.  Anatomy of phobanes. diastereoselective synthesis of the three isomers of n-butylphobane and a comparison of their donor properties. , 2009, Journal of the American Chemical Society.

[17]  Hans-Joachim Werner,et al.  Simplified CCSD(T)-F12 methods: theory and benchmarks. , 2009, The Journal of chemical physics.

[18]  C. Landis,et al.  Origin of pressure effects on regioselectivity and enantioselectivity in the rhodium-catalyzed hydroformylation of styrene with (S,S,S)-BisDiazaphos. , 2010, Journal of the American Chemical Society.

[19]  R. Heck Addition reactions of transition metal compounds , 1969 .

[20]  J. Coetzee,et al.  Hydroformylation studies using high pressure NMR spectroscopy , 2004 .

[21]  M. W. George,et al.  Understanding the factors affecting the activation of alkane by Cp′Rh(CO)2 (Cp′ = Cp or Cp*) , 2010, Proceedings of the National Academy of Sciences.

[22]  S. Shaik,et al.  Factors Controlling the Selective Hydroformylation of Internal Alkenes to Linear Aldehydes. 1. The Isomerization Step , 2009 .

[23]  S. Massick,et al.  Activation parameters for the reactive intermediates relevant to carbonylation catalysts based on cobalt carbonyls. , 2003, Inorganic Chemistry.

[24]  J. Harvey,et al.  Accurate modelling of Pd(0) + PhX oxidative addition kinetics. , 2010, Dalton transactions.

[25]  M. Datt,et al.  Recent advances in high-pressure infrared and NMR techniques for the determination of catalytically active species in rhodium- and cobalt-catalysed hydroformylation reactions , 2004 .

[26]  Richard F. Heck,et al.  The Reaction of Cobalt Hydrotetracarbonyl with Olefins , 1961 .

[27]  P. V. Leeuwen,et al.  Homogeneous Catalysis: Understanding the Art , 2004 .

[28]  W. Herrmann,et al.  OTTO ROELEN ALS WEGBEREITER DER INDUSTRIELLEN HOMOGENEN KATALYSE , 1994 .

[29]  R. J. Klingler,et al.  Propylene hydroformylation in supercritical carbon dioxide , 1991 .

[30]  I. Horváth,et al.  Water-soluble-phosphines-assisted cobalt separation in cobalt-catalyzed hydroformylation , 2013 .

[31]  L. Markó,et al.  Kinetic investigation of the cleavage of n-butyryl- or isobutyrylcobalt tetracarbonyl with hydridocobalt tetracarbonyl or dihydrogen , 1986 .

[32]  Keith J. Laidler Chemical kinetics / Keith J. Leidler , 1987 .

[33]  S. Shaik,et al.  How to conceptualize catalytic cycles? The energetic span model. , 2011, Accounts of chemical research.

[34]  Richard A Friesner,et al.  A B3LYP-DBLOC empirical correction scheme for ligand removal enthalpies of transition metal complexes: parameterization against experimental and CCSD(T)-F12 heats of formation. , 2012, Physical chemistry chemical physics : PCCP.

[35]  Satoshi Maeda,et al.  Toward Predicting Full Catalytic Cycle Using Automatic Reaction Path Search Method: A Case Study on HCo(CO)3-Catalyzed Hydroformylation. , 2012, Journal of chemical theory and computation.