Force-based models of pedestrian dynamics

Force-based models describe the interactions of pedestrians in terms of physical and social forces. We discuss some intrinsic problems of this approach, like penetration of particles, unrealistic oscillations and velocities as well as conceptual problems related to violations of Newton's laws. We then present the generalized centrifugal force model which solves some of these problems. Furthermore we discuss the problem of choosing a realistic driving force to an exit. We illustrate this problem by investigating the behaviour of pedestrians at bottlenecks.

[1]  Dirk Helbing,et al.  Specification of the Social Force Pedestrian Model by Evolutionary Adjustment to Video Tracking Data , 2007, Adv. Complex Syst..

[2]  Andreas Schadschneider,et al.  Friction effects and clogging in a cellular automaton model for pedestrian dynamics. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Michael Schreckenberg,et al.  Pedestrian and evacuation dynamics , 2002 .

[4]  Ansgar Kirchner,et al.  Modellierung und statistische Physik biologischer und sozialer Systeme , 2002 .

[5]  Armin Seyfried,et al.  The repulsive force in continous space models of pedestrian movement , 2008 .

[6]  William Schroeder,et al.  The Visualization Toolkit: An Object-Oriented Approach to 3-D Graphics , 1997 .

[7]  Dirk Helbing,et al.  Collective phenomena and states in traffic and self-driven many-particle systems , 2004 .

[8]  Serge P. Hoogendoorn,et al.  Microscopic calibration and validation of pedestrian models — Cross-comparison of models using experimental data , 2007 .

[9]  Armin Seyfried,et al.  Hermes - an Evacuation Assistant for Mass Events , 2009 .

[10]  Jun Zhang,et al.  Extraction and quantitative analysis of microscopic evacuation characteristics based on digital image processing , 2009 .

[11]  Evacuation Dynamics,et al.  Pedestrian and evacuation dynamics 2005 , 2007 .

[12]  Andreas Schadschneider,et al.  I'm a football fan... get me out of here , 2010 .

[13]  Stéphane Donikian,et al.  A synthetic-vision based steering approach for crowd simulation , 2010, SIGGRAPH 2010.

[14]  Eric W. Marchant,et al.  A computer model for the evacuation of large building populations , 1995 .

[15]  T. Vicsek,et al.  Simulation of pedestrian crowds in normal and evacuation situations , 2002 .

[16]  Mohcine Chraibi,et al.  Quantitative Verification of a Force-based Model for Pedestrian Dynamics , 2009, 0912.4044.

[17]  Mohcine Chraibi,et al.  Quantitative Description of Pedestrian Dynamics with a Force-Based Model , 2009, 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology.

[18]  Serge P. Hoogendoorn,et al.  Pedestrian Behavior at Bottlenecks , 2005, Transp. Sci..

[19]  Dinesh Manocha,et al.  Reciprocal Velocity Obstacles for real-time multi-agent navigation , 2008, 2008 IEEE International Conference on Robotics and Automation.

[20]  Demetri Terzopoulos,et al.  Autonomous pedestrians , 2005, SCA '05.

[21]  Helbing,et al.  Social force model for pedestrian dynamics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[22]  A. Seyfried,et al.  Basics of Modelling the Pedestrian Flow , 2005, physics/0506189.

[23]  Mohcine Chraibi,et al.  Generalized centrifugal-force model for pedestrian dynamics. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  K. Lewin Field theory in social science , 1951 .

[25]  C. Dorso,et al.  Morphological and dynamical aspects of the room evacuation process , 2007 .

[26]  Serge P. Hoogendoorn,et al.  A Novel Calibration Approach of Microscopic Pedestrian Models , 2009 .

[27]  Andreas Schadschneider,et al.  An Experimental Study of Pedestrian Congestions: Influence of Bottleneck Width and Length , 2009, 0911.4350.

[28]  Hubert Klüpfel,et al.  Evacuation Dynamics: Empirical Results, Modeling and Applications , 2009, Encyclopedia of Complexity and Systems Science.

[29]  K. Nishinari,et al.  Introduction of frictional and turning function for pedestrian outflow with an obstacle. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Hubert Klüpfel,et al.  Fundamentals of Pedestrian and Evacuation Dynamics , 2009, Multi-Agent Systems for Traffic and Transportation Engineering.

[31]  Peter Vortisch,et al.  Pedestrian Flow at Bottlenecks - Validation and Calibration of Vissim's Social Force Model of Pedestrian Traffic and its Empirical Foundations , 2008, ArXiv.

[32]  Daniel R. Parisi,et al.  A modification of the Social Force Model can reproduce experimental data of pedestrian flows in normal conditions , 2009 .

[33]  André Borrmann,et al.  Graph-based approaches for simulating pedestrian dynamics in building models , 2010 .

[34]  Andreas Schadschneider,et al.  Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics , 2002 .

[35]  Albert Steiner,et al.  Parameter estimation for a pedestrian simulation model , 2007 .

[36]  M. Schreckenberg,et al.  Experimental study of pedestrian flow through a bottleneck , 2006, physics/0610077.

[37]  Mohcine Chraibi,et al.  Pedestrian Dynamics with Event-Driven Simulation , 2008, 0806.4288.

[38]  Takamasa Iryo,et al.  Microscopic pedestrian simulation model combined with a tactical model for route choice behaviour , 2010 .

[39]  Yu-Chun Wang,et al.  Survey of pedestrian movement and development of a crowd dynamics model , 2008 .

[40]  A. Schadschneider,et al.  Enhanced Empirical Data for the Fundamental Diagram and the Flow Through Bottlenecks , 2008, 0810.1945.

[41]  Bernhard Steffen,et al.  New Insights into Pedestrian Flow Through Bottlenecks , 2009, Transp. Sci..

[42]  S. Dai,et al.  Centrifugal force model for pedestrian dynamics. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  Peter Palffy-Muhoray,et al.  Distance of closest approach of two arbitrary hard ellipses in two dimensions. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  Taras I. Lakoba,et al.  Modifications of the Helbing-Molnár-Farkas-Vicsek Social Force Model for Pedestrian Evolution , 2005, Simul..

[45]  Rainald Löhner,et al.  On the modeling of pedestrian motion , 2010 .

[46]  Eric W. Marchant,et al.  Testing and application of the computer model ‘SIMULEX’ , 1995 .