Atomic Cut Introduction by Resolution: Proof Structuring and Compression

The careful introduction of cut inferences can be used to structure and possibly compress formal sequent calculus proofs. This paper presents CIRes, an algorithm for the introduction of atomic cuts based on various modifications and improvements of the CERes method, which was originally devised for efficient cut-elimination. It is also demonstrated that CIRes is capable of compressing proofs, and the amount of compression is shown to be exponential in the length of proofs.

[1]  Christian G. Fermüller,et al.  Cut Elimination for First Order Gödel Logic by Hyperclause Resolution , 2008, LPAR.

[2]  Alexander Leitsch,et al.  Herbrand Sequent Extraction , 2008, AISC/MKM/Calculemus.

[3]  Stefan Hetzl Proof Profiles: Characteristic Clause Sets and Proof Transformations , 2008 .

[4]  Bruno Woltzenlogel Paleo,et al.  Physics and proof theory , 2010, Appl. Math. Comput..

[5]  Vincent Danos,et al.  The Structure of Exponentials: Uncovering the Dynamics of Linear Logic Proofs , 1993, Kurt Gödel Colloquium.

[6]  Nathan Segerlind,et al.  The Complexity of Propositional Proofs , 2007, Bull. Symb. Log..

[7]  Matthias Baaz,et al.  Algorithmic Structuring of Cut-free Proofs , 1992, CSL.

[8]  Vivek Nigam Using Tables to Construct Non-Redundant Proofs , 2008 .

[9]  Alexander Leitsch,et al.  Cut-Elimination: Experiments with CERES , 2005, LPAR.

[10]  Jean Goubault-Larrecq,et al.  Normal Form Transformations , 2001, Handbook of Automated Reasoning.

[11]  Dale Miller,et al.  Incorporating Tables into Proofs , 2007, CSL.

[12]  Alexander Leitsch,et al.  Cut-elimination and Redundancy-elimination by Resolution , 2000, J. Symb. Comput..

[13]  Frank Wolter,et al.  Monodic fragments of first-order temporal logics: 2000-2001 A.D , 2001, LPAR.

[14]  Alex K. Simpson,et al.  Computational Adequacy in an Elementary Topos , 1998, CSL.

[15]  Stefan Hetzl,et al.  Proof Fragments , Cut-Elimination and Cut-Introduction , 2010 .

[16]  V. Orevkov Lower bounds for increasing complexity of derivations after cut elimination , 1982 .

[17]  M. Baaz,et al.  Methods of Cut-Elimination , 2011 .

[18]  Stephen Cook,et al.  Corrections for "On the lengths of proofs in the propositional calculus preliminary version" , 1974, SIGA.

[19]  Uwe Egly,et al.  Structuring of Computer-Generated Proofs by Cut Introduction , 1997, Kurt Gödel Colloquium.

[20]  R. Statman Lower bounds on Herbrand’s theorem , 1979 .

[21]  Alexander Leitsch,et al.  Comparing the Complexity of Cut-Elimination Methods , 2001, Proof Theory in Computer Science.

[22]  Alan Robinson,et al.  Handbook of automated reasoning , 2001 .

[23]  Alexander Leitsch,et al.  CERES in Many-Valued Logics , 2004, LPAR.

[24]  Dov M. Gabbay,et al.  Equal Rights for the Cut: Computable Non-analytic Cuts in Cut-based Proofs , 2007, Log. J. IGPL.

[25]  Alexander A. Razborov,et al.  Complexity of Propositional Proofs , 2010, CSR.