Non-sampling inverse stochastic numerical–experimental identification of random elastic material parameters in composite plates

Abstract A non-sampling probability identification method based on the generalized polynomial chaos (gPC) expansion is adopted for estimating random parameters of composite plates form experimental eigenfrequencies. For that, the parameters and the eigenfrequencies are approximated using gPC expansion. Distribution functions of the eigenfrequencies are identified from experimental data employing the Bayesian inference. This identification is then used to construct a vector of random variables and an orthogonal basis for eigenfrequency expansions. The parameters are characterized by the gPC having unknown deterministic coefficients and the same random basis as the eigenfrequencies. The stochastic finite element simulation of the plates bears as the model from which the parameter coefficients are estimated via an inverse problem. The major advantage of the method is using deterministic identification procedure. An application is presented for which samples of orthotropic laminated plates are tested to identify E-moduli, shear modulus and the major Poisson's ratio from measured modal frequencies.

[1]  Curtis Smith,et al.  Bayesian inference in probabilistic risk assessment - The current state of the art , 2009, Reliab. Eng. Syst. Saf..

[2]  Steffen Marburg,et al.  Stochastic free vibration of orthotropic plates using generalized polynomial chaos expansion , 2012 .

[3]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[4]  Nicholas Zabaras,et al.  Hierarchical Bayesian models for inverse problems in heat conduction , 2005 .

[5]  Christian Soize,et al.  A computational inverse method for identification of non-Gaussian random fields using the Bayesian approach in very high dimension , 2011, Computer Methods in Applied Mechanics and Engineering.

[6]  N. Wiener The Homogeneous Chaos , 1938 .

[7]  A. Araújo,et al.  Characterization of material parameters of composite plate specimens using optimization and experimental vibrational data , 1996 .

[8]  Joël Cugnoni,et al.  Numerical-experimental identification of the elastic and damping properties in composite plates , 2009 .

[9]  Per S. Frederiksen,et al.  Experimental Procedure and Results for the Identification of Elastic Constants of Thick Orthotropic Plates , 1997 .

[10]  Christian Soize,et al.  Maximum likelihood estimation of stochastic chaos representations from experimental data , 2006 .

[11]  Hermann G. Matthies,et al.  Sampling-free linear Bayesian update of polynomial chaos representations , 2012, J. Comput. Phys..

[12]  Roger G. Ghanem,et al.  On the construction and analysis of stochastic models: Characterization and propagation of the errors associated with limited data , 2006, J. Comput. Phys..

[13]  Prasanth B. Nair,et al.  Projection schemes in stochastic finite element analysis , 2004 .

[14]  Steffen Marburg,et al.  Identification of composite uncertain material parameters from experimental modal data , 2014 .

[15]  Alberto Taliercio,et al.  Mechanical behaviour of brittle matrix composites: a homogenization approach , 1999 .

[16]  Habib N. Najm,et al.  Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..

[17]  Steffen Marburg,et al.  UNCERTAINTY QUANTIFICATION IN STOCHASTIC SYSTEMS USING POLYNOMIAL CHAOS EXPANSION , 2010 .

[18]  C. M. Mota Soares,et al.  Identification of material properties of composite plate specimens , 1993 .

[19]  Christian Soize,et al.  Probabilistic approach for model and data uncertainties and its experimental identification in structural dynamics: Case of composite sandwich panels , 2006 .

[20]  Mircea Grigoriu,et al.  Probability and Materials: from Nano- to Macro-Scale: A summary , 2006 .

[21]  Raphael T. Haftka,et al.  Introduction to the Bayesian Approach Applied to Elastic Constants Identification , 2010 .

[22]  N. Zabaras,et al.  Stochastic inverse heat conduction using a spectral approach , 2004 .

[23]  T. Ferguson An Inconsistent Maximum Likelihood Estimate , 1982 .

[24]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[25]  Ward Heylen,et al.  Handling uncertainties in mixed numerical-experimental techniques for vibration based material identification , 2006 .

[26]  G. N. Pande,et al.  Identification of elastic constants for orthotropic materials from a structural test , 2003 .

[27]  Yves Rolain,et al.  Identification of Young's modulus from broadband modal analysis experiments , 2004 .

[28]  Modeling the effects of material non-linearity using moving window micromechanics , 2005 .

[29]  Jason T. Dreyer,et al.  Identification of dynamic stiffness matrices of elastomeric joints using direct and inverse methods , 2013 .

[30]  Hans-Jürgen Hardtke,et al.  STOCHASTIC STRUCTURAL MODAL ANALYSIS INVOLVING UNCERTAIN PARAMETERS USING GENERALIZED POLYNOMIAL CHAOS EXPANSION , 2011 .

[31]  Renato Barbieri,et al.  Parameters estimation of sandwich beam model with rigid polyurethane foam core , 2010 .