Non-sampling inverse stochastic numerical–experimental identification of random elastic material parameters in composite plates
暂无分享,去创建一个
[1] Curtis Smith,et al. Bayesian inference in probabilistic risk assessment - The current state of the art , 2009, Reliab. Eng. Syst. Saf..
[2] Steffen Marburg,et al. Stochastic free vibration of orthotropic plates using generalized polynomial chaos expansion , 2012 .
[3] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[4] Nicholas Zabaras,et al. Hierarchical Bayesian models for inverse problems in heat conduction , 2005 .
[5] Christian Soize,et al. A computational inverse method for identification of non-Gaussian random fields using the Bayesian approach in very high dimension , 2011, Computer Methods in Applied Mechanics and Engineering.
[6] N. Wiener. The Homogeneous Chaos , 1938 .
[7] A. Araújo,et al. Characterization of material parameters of composite plate specimens using optimization and experimental vibrational data , 1996 .
[8] Joël Cugnoni,et al. Numerical-experimental identification of the elastic and damping properties in composite plates , 2009 .
[9] Per S. Frederiksen,et al. Experimental Procedure and Results for the Identification of Elastic Constants of Thick Orthotropic Plates , 1997 .
[10] Christian Soize,et al. Maximum likelihood estimation of stochastic chaos representations from experimental data , 2006 .
[11] Hermann G. Matthies,et al. Sampling-free linear Bayesian update of polynomial chaos representations , 2012, J. Comput. Phys..
[12] Roger G. Ghanem,et al. On the construction and analysis of stochastic models: Characterization and propagation of the errors associated with limited data , 2006, J. Comput. Phys..
[13] Prasanth B. Nair,et al. Projection schemes in stochastic finite element analysis , 2004 .
[14] Steffen Marburg,et al. Identification of composite uncertain material parameters from experimental modal data , 2014 .
[15] Alberto Taliercio,et al. Mechanical behaviour of brittle matrix composites: a homogenization approach , 1999 .
[16] Habib N. Najm,et al. Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..
[17] Steffen Marburg,et al. UNCERTAINTY QUANTIFICATION IN STOCHASTIC SYSTEMS USING POLYNOMIAL CHAOS EXPANSION , 2010 .
[18] C. M. Mota Soares,et al. Identification of material properties of composite plate specimens , 1993 .
[19] Christian Soize,et al. Probabilistic approach for model and data uncertainties and its experimental identification in structural dynamics: Case of composite sandwich panels , 2006 .
[20] Mircea Grigoriu,et al. Probability and Materials: from Nano- to Macro-Scale: A summary , 2006 .
[21] Raphael T. Haftka,et al. Introduction to the Bayesian Approach Applied to Elastic Constants Identification , 2010 .
[22] N. Zabaras,et al. Stochastic inverse heat conduction using a spectral approach , 2004 .
[23] T. Ferguson. An Inconsistent Maximum Likelihood Estimate , 1982 .
[24] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[25] Ward Heylen,et al. Handling uncertainties in mixed numerical-experimental techniques for vibration based material identification , 2006 .
[26] G. N. Pande,et al. Identification of elastic constants for orthotropic materials from a structural test , 2003 .
[27] Yves Rolain,et al. Identification of Young's modulus from broadband modal analysis experiments , 2004 .
[28] Modeling the effects of material non-linearity using moving window micromechanics , 2005 .
[29] Jason T. Dreyer,et al. Identification of dynamic stiffness matrices of elastomeric joints using direct and inverse methods , 2013 .
[30] Hans-Jürgen Hardtke,et al. STOCHASTIC STRUCTURAL MODAL ANALYSIS INVOLVING UNCERTAIN PARAMETERS USING GENERALIZED POLYNOMIAL CHAOS EXPANSION , 2011 .
[31] Renato Barbieri,et al. Parameters estimation of sandwich beam model with rigid polyurethane foam core , 2010 .