Estimating the marginal likelihood with Integrated nested Laplace approximation (INLA)
暂无分享,去创建一个
[1] Aliaksandr Hubin,et al. Mode jumping MCMC for Bayesian variable selection in GLMM , 2016, Comput. Stat. Data Anal..
[2] Jean-Michel Marin,et al. Approximate Bayesian computational methods , 2011, Statistics and Computing.
[3] Nial Friel,et al. Estimating the evidence – a review , 2011, 1111.1957.
[4] H. Rue,et al. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations , 2009 .
[5] D. M. Titterington,et al. Variational approximations in Bayesian model selection for finite mixture distributions , 2007, Comput. Stat. Data Anal..
[6] Tony O’Hagan. Bayes factors , 2006 .
[7] M. Newton,et al. Estimating the Integrated Likelihood via Posterior Simulation Using the Harmonic Mean Identity , 2006 .
[8] Michael I. Jordan,et al. An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.
[9] S. Chib,et al. Marginal Likelihood From the Metropolis–Hastings Output , 2001 .
[10] S. Chib,et al. Posterior Simulation and Bayes Factors in Panel Count Data Models , 1998 .
[11] S. Chib. Marginal Likelihood from the Gibbs Output , 1995 .
[12] M. Newton. Approximate Bayesian-inference With the Weighted Likelihood Bootstrap , 1994 .
[13] L. Tierney,et al. Accurate Approximations for Posterior Moments and Marginal Densities , 1986 .