A simple proof of the Littlewood-Richardson rule and applications
暂无分享,去创建一个
[1] Jeffrey B. Remmel,et al. Multiplying Schur functions , 1984, J. Algorithms.
[2] I. Gessel,et al. Binomial Determinants, Paths, and Hook Length Formulae , 1985 .
[3] Jeffrey B. Remmel,et al. A combinatorial rule for the schur function expansion of the Plethysm S(1 a ,b)[Pk ] , 1995 .
[4] A. Lascoux,et al. Crystal graphs andq-analogues of weight multiplicities for the root systemAn , 1995 .
[5] D. E. Littlewood,et al. Group Characters and Algebra , 1934 .
[6] Jean-Yves Thibon,et al. The Robinson-Schensted correspondence as the quantum straightening at q=0 , 1996, Electron. J. Comb..
[7] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[8] J. Remmel,et al. A combinatorial interpretation of the inverse kostka matrix , 1990 .
[9] Sergey Fomin,et al. A Littlewood-Richardson Miscellany , 1993, Eur. J. Comb..
[10] Littlewood-Richardson without algorithmically defined bijections. , 1988 .