Rapid Land Cover Map Updates Using Change Detection and Robust Random Forest Classifiers

The CSIR and the Department Rural Development and Land Reform, National Geo-spatial Information (NGI).

[1]  M. Thompson,et al.  A standard land-cover classification scheme for remote-sensing applications in South Africa , 1996 .

[2]  Suming Jin,et al.  A comprehensive change detection method for updating the National Land Cover Database to circa 2011 , 2013 .

[3]  Zhiqiang Yang,et al.  Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr — Temporal segmentation algorithms , 2010 .

[4]  M. Herold,et al.  Tracking disturbance-regrowth dynamics in tropical forests using structural change detection and Landsat time series , 2015 .

[5]  Pol Coppin,et al.  Review ArticleDigital change detection methods in ecosystem monitoring: a review , 2004 .

[6]  D. Roy,et al.  Web-enabled Landsat Data (WELD): Landsat ETM+ composited mosaics of the conterminous United States , 2010 .

[7]  K. Moffett,et al.  Remote Sens , 2015 .

[8]  C. Woodcock,et al.  Continuous monitoring of forest disturbance using all available Landsat imagery , 2012 .

[9]  Barend F.N. Erasmus,et al.  Systematic land-cover change in KwaZulu-Natal, South Africa: Implications for biodiversity. , 2015 .

[10]  Waldo Kleynhans,et al.  Land Cover Change Detection Using Autocorrelation Analysis on MODIS Time-Series Data: Detection of New Human Settlements in the Gauteng Province of South Africa , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[11]  M. Friedl,et al.  Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM+ data , 2013 .

[12]  Pesaresi Martino GLOBAL FINE-SCALE INFORMATION LAYERS: THE NEED OF A PARADIGM SHIFT , 2014 .

[13]  Eric A. Lehmann,et al.  Forest cover trends from time series Landsat data for the Australian continent , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[14]  Hankui K. Zhang,et al.  Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data , 2013 .

[15]  Mariana Belgiu,et al.  Random forest in remote sensing: A review of applications and future directions , 2016 .

[16]  Belinda A. Margono,et al.  Humid tropical forest disturbance alerts using Landsat data , 2016 .

[17]  Russell Main,et al.  L-band Synthetic Aperture Radar imagery performs better than optical datasets at retrieving woody fractional cover in deciduous, dry savannahs , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[18]  Jonathan Cheung-Wai Chan,et al.  Multiple Criteria for Evaluating Machine Learning Algorithms for Land Cover Classification from Satellite Data , 2000 .

[19]  R. DeFries,et al.  Land‐use choices: balancing human needs and ecosystem function , 2004 .

[20]  David P. Roy,et al.  Continuous fields of land cover for the conterminous United States using Landsat data: first results from the Web-Enabled Landsat Data (WELD) project , 2011 .

[21]  J. Townshend,et al.  Global, Landsat-based forest-cover change from 1990 to 2000 , 2014 .

[22]  J. Wickham,et al.  Accuracy assessment of NLCD 2006 land cover and impervious surface , 2013 .

[23]  Darrel L. Williams,et al.  Landsat sensor performance: history and current status , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[24]  Mario Chica-Olmo,et al.  An assessment of the effectiveness of a random forest classifier for land-cover classification , 2012 .

[25]  Nicholas J. Tate,et al.  A critical synthesis of remotely sensed optical image change detection techniques , 2015 .

[26]  Xuehong Chen,et al.  An automated approach for updating land cover maps based on integrated change detection and classification methods , 2012 .

[27]  Warren B. Cohen,et al.  Trajectory-based change detection for automated characterization of forest disturbance dynamics , 2007 .

[28]  René Roland Colditz,et al.  An Evaluation of Different Training Sample Allocation Schemes for Discrete and Continuous Land Cover Classification Using Decision Tree-Based Algorithms , 2015, Remote. Sens..

[29]  Zhengwei Yang,et al.  Monitoring US agriculture: the US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program , 2011 .

[30]  J. Fry,et al.  Updating the 2001 National Land Cover Database land cover classification to 2006 by using Landsat imagery change detection methods , 2009 .

[31]  Zhe Zhu,et al.  Object-based cloud and cloud shadow detection in Landsat imagery , 2012 .

[32]  Martha C. Anderson,et al.  Landsat-8: Science and Product Vision for Terrestrial Global Change Research , 2014 .

[33]  S. Carpenter,et al.  Global Consequences of Land Use , 2005, Science.

[34]  F. Müller,et al.  Mapping ecosystem service supply, demand and budgets , 2012 .

[35]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[36]  Allan Aasbjerg Nielsen,et al.  Visualization and unsupervised classification of changes in multispectral satellite imagery , 2006 .

[37]  Moses Azong Cho,et al.  Toward structural assessment of semi-arid African savannahs and woodlands: The potential of multitemporal polarimetric RADARSAT-2 fine beam images , 2013 .

[38]  M. Herold,et al.  Fusing Landsat and SAR time series to detect deforestation in the tropics , 2015 .

[39]  Thilo Wehrmann,et al.  MAD-MEX: Automatic Wall-to-Wall Land Cover Monitoring for the Mexican REDD-MRV Program Using All Landsat Data , 2014, Remote. Sens..

[40]  D. Roy,et al.  The suitability of multi-temporal web-enabled Landsat data NDVI for phenological monitoring – a comparison with flux tower and MODIS NDVI , 2012 .

[41]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[42]  M. Herold,et al.  Robust monitoring of small-scale forest disturbances in a tropical montane forest using Landsat time series , 2015 .

[43]  Kathleen Neumann,et al.  Challenges in using land use and land cover data for global change studies , 2011 .

[44]  Chengquan Huang,et al.  Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error , 2013, Int. J. Digit. Earth.

[45]  C. Justice,et al.  High-Resolution Global Maps of 21st-Century Forest Cover Change , 2013, Science.

[46]  Lin Yan,et al.  Improved time series land cover classification by missing-observation-adaptive nonlinear dimensionality reduction , 2015 .

[47]  Thomas R. Loveland,et al.  A review of large area monitoring of land cover change using Landsat data , 2012 .

[48]  Giles M. Foody,et al.  Status of land cover classification accuracy assessment , 2002 .

[49]  Belinda Reyers,et al.  Identification of potential conflict areas between land transformation and biodiversity conservation in north-eastern South Africa , 2003 .

[50]  Warren B. Cohen,et al.  Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync — Tools for calibration and validation , 2010 .

[51]  D. Roy,et al.  Conterminous United States crop field size quantification from multi-temporal Landsat data , 2015 .

[52]  A. D. Gregorio,et al.  Land Cover Classification System (LCCS): Classification Concepts and User Manual , 2000 .

[53]  David P. Roy,et al.  The global Landsat archive: Status, consolidation, and direction , 2016 .

[54]  Stuart R. Phinn,et al.  Preparing Landsat Image Time Series (LITS) for Monitoring Changes in Vegetation Phenology in Queensland, Australia , 2012, Remote. Sens..

[55]  R. Mueller,et al.  The 2009 Cropland Data Layer. , 2010 .

[56]  Robert E. Wolfe,et al.  A Landsat surface reflectance dataset for North America, 1990-2000 , 2006, IEEE Geoscience and Remote Sensing Letters.

[57]  S. Goward,et al.  An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks , 2010 .

[58]  Russell G. Congalton,et al.  Assessing the accuracy of remotely sensed data : principles and practices , 1998 .

[59]  Chandra P. Giri,et al.  Land Cover Characterization and Mapping of South America for the Year 2010 Using Landsat 30 m Satellite Data , 2014, Remote. Sens..

[60]  D. Roy,et al.  MODIS–Landsat fusion for large area 30m burned area mapping , 2015 .

[61]  M. Herold,et al.  Near real-time disturbance detection using satellite image time series , 2012 .

[62]  T. Newby,et al.  The South African land-cover characteristics database: a synopsis of the landscape. , 2000 .

[63]  Suming Jin,et al.  Completion of the 2011 National Land Cover Database for the Conterminous United States – Representing a Decade of Land Cover Change Information , 2015 .

[64]  D. Roy,et al.  Monitoring conterminous United States (CONUS) land cover change with Web-Enabled Landsat Data (WELD) , 2014 .

[65]  Food Security Agriculture Organization of the United Nations (FAO) , 2004 .

[66]  Chandra P. Giri,et al.  Next generation of global land cover characterization, mapping, and monitoring , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[67]  Sean M. McMahon,et al.  A model for the propagation of uncertainty from continuous estimates of tree cover to categorical forest cover and change , 2015 .

[68]  D. Lu,et al.  Change detection techniques , 2004 .