Venom components from Citharischius crawshayi spider (Family Theraphosidae): exploring transcriptome, venomics, and function

[1]  K. Yano,et al.  Transcriptome map of plant mitochondria reveals islands of unexpected transcribed regions , 2011, BMC Genomics.

[2]  Liping Jiang,et al.  Transcriptome analysis of the venom glands of the Chinese wolf spider Lycosa singoriensis. , 2010, Zoology.

[3]  Q. Kaas,et al.  ArachnoServer: a database of protein toxins from spiders , 2009, BMC Genomics.

[4]  T. Vasskog,et al.  Hyastatin, a glycine-rich multi-domain antimicrobial peptide isolated from the spider crab (Hyas araneus) hemocytes. , 2009, Molecular immunology.

[5]  J. Tytgat,et al.  Insecticidal peptides from the theraposid spider Brachypelma albiceps: an NMR-based model of Ba2. , 2009, Biochimica et biophysica acta.

[6]  G. King,et al.  Venomics as a drug discovery platform , 2009, Expert review of proteomics.

[7]  G. King,et al.  Comparison of the peptidome and insecticidal activity of venom from a taxonomically diverse group of theraphosid spiders. , 2009, Toxicon : official journal of the International Society on Toxinology.

[8]  Songnian Hu,et al.  Analysis of tarantula skeletal muscle protein sequences and identification of transcriptional isoforms , 2009, BMC Genomics.

[9]  Liping Jiang,et al.  Transcriptome analysis revealed novel possible venom components and cellular processes of the tarantula Chilobrachys jingzhao venom gland. , 2008, Toxicon : official journal of the International Society on Toxinology.

[10]  J. Tytgat,et al.  An insecticidal peptide from the theraposid Brachypelma smithi spider venom reveals common molecular features among spider species from different genera , 2008, Peptides.

[11]  S. Liang,et al.  Molecular diversity and evolution of cystine knot toxins of the tarantula Chilobrachys jingzhao , 2008, Cellular and Molecular Life Sciences.

[12]  Liping Jiang,et al.  Molecular diversification based on analysis of expressed sequence tags from the venom glands of the Chinese bird spider Ornithoctonus huwena. , 2008, Toxicon : official journal of the International Society on Toxinology.

[13]  D. Tambourgi,et al.  Transcriptome analysis of Loxosceles laeta (Araneae, Sicariidae) spider venomous gland using expressed sequence tags , 2008, BMC Genomics.

[14]  W. Maddison,et al.  Actin 5C, a promising nuclear gene for spider phylogenetics. , 2008, Molecular phylogenetics and evolution.

[15]  L. Possani,et al.  Proteomic analysis of the venom from the scorpion Tityus stigmurus: biochemical and physiological comparison with other Tityus species. , 2007, Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.

[16]  M. Grunstein,et al.  Functions of site-specific histone acetylation and deacetylation. , 2007, Annual review of biochemistry.

[17]  C. Yuan,et al.  Proteomic and peptidomic characterization of the venom from the Chinese bird spider, Ornithoctonus huwena Wang. , 2007, Journal of proteome research.

[18]  Xiaojun Yan,et al.  Proteomic and peptidomic analysis of the venom from Chinese tarantula Chilobrachys jingzhao , 2007, Proteomics.

[19]  C. Yuan,et al.  Solution structure and functional characterization of jingzhaotoxin-XI: a novel gating modifier of both potassium and sodium channels. , 2006, Biochemistry.

[20]  P. Escoubas Molecular diversification in spider venoms: A web of combinatorial peptide libraries , 2006, Molecular Diversity.

[21]  G. King,et al.  Venom landscapes: mining the complexity of spider venoms via a combined cDNA and mass spectrometric approach. , 2006, Toxicon : official journal of the International Society on Toxinology.

[22]  C. Legros,et al.  Peptide profiling by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry of the Lasiodora parahybana tarantula venom gland. , 2006, Toxicon : official journal of the International Society on Toxinology.

[23]  M. Lazdunski,et al.  Four Novel Tarantula Toxins as Selective Modulators of Voltage-Gated Sodium Channel Subtypes , 2006, Molecular Pharmacology.

[24]  P. Roepstorff,et al.  Proteome analysis of brown spider venom: Identification of loxnecrogin isoforms in Loxosceles gaucho venom , 2005, Proteomics.

[25]  J. Peter Gogarten,et al.  Were arachnids the first to use combinatorial peptide libraries? , 2005, Peptides.

[26]  P. Escoubas,et al.  Tarantulas: eight-legged pharmacists and combinatorial chemists. , 2004, Toxicon : official journal of the International Society on Toxinology.

[27]  P. Escoubas,et al.  Pharmacologically active spider peptide toxins , 2003, Cellular and Molecular Life Sciences CMLS.

[28]  R. Stöcklin,et al.  Moving pieces in a proteomic puzzle: mass fingerprinting of toxic fractions from the venom of Tityus serrulatus (Scorpiones, Buthidae). , 2001, Rapid communications in mass spectrometry : RCM.

[29]  R. Stöcklin,et al.  A comparison of matrix-assisted laser desorption/ionization time-of-flight and liquid chromatography electrospray ionization mass spectrometry methods for the analysis of crude tarantula venoms in the Pterinochilus group. , 1999, Rapid communications in mass spectrometry : RCM.

[30]  G. Wang,et al.  Selective peptide antagonist of the class E calcium channel from the venom of the tarantula Hysterocrates gigas. , 1998, Biochemistry.

[31]  M. Finnie,et al.  Mechanism of C-terminal amide formation by pituitary enzymes , 1982, Nature.

[32]  F. Rumjanek,et al.  The peptide components of bee venom. , 1976, European journal of biochemistry.