RNA interactions in the 5' region of the HIV-1 genome.

[1]  Bjarne Knudsen,et al.  Pfold: RNA Secondary Structure Prediction Using Stochastic Context-Free Grammars , 2003 .

[2]  B. Berkhout,et al.  A Novel Long Distance Base-pairing Interaction in Human Immunodeficiency Virus Type 1 RNA Occludes the Gag Start Codon* , 2003, The Journal of Biological Chemistry.

[3]  John D. Ivanovitch,et al.  Elements located upstream and downstream of the major splice donor site influence the ability of HIV-2 leader RNA to dimerize in vitro. , 2003, Biochemistry.

[4]  Ben Berkhout,et al.  Dimerization and Template Switching in the 5′ Untranslated Region between Various Subtypes of Human Immunodeficiency Virus Type 1 , 2003, Journal of Virology.

[5]  C. Ehresmann,et al.  Does the HIV-1 primer activation signal interact with tRNA3(Lys) during the initiation of reverse transcription? , 2003, Nucleic acids research.

[6]  C. Ehresmann,et al.  Direct and Indirect Contributions of RNA Secondary Structure Elements to the Initiation of HIV-1 Reverse Transcription* , 2002, The Journal of Biological Chemistry.

[7]  J. Kjems,et al.  hnRNP A1 controls HIV-1 mRNA splicing through cooperative binding to intron and exon splicing silencers in the context of a conserved secondary structure. , 2002, RNA.

[8]  B. Berkhout,et al.  The tRNA Primer Activation Signal in the Human Immunodeficiency Virus Type 1 Genome Is Important for Initiation and Processive Elongation of Reverse Transcription , 2002, Journal of Virology.

[9]  Chantal Ehresmann,et al.  In Vitro Evidence for a Long Range Pseudoknot in the 5′-Untranslated and Matrix Coding Regions of HIV-1 Genomic RNA* , 2002, The Journal of Biological Chemistry.

[10]  M. Wainberg,et al.  Structural and functional properties of the HIV-1 RNA-tRNA(Lys)3 primer complex annealed by the nucleocapsid protein: comparison with the heat-annealed complex. , 2002, RNA.

[11]  H. Huthoff,et al.  The Dimer Initiation Site Hairpin Mediates Dimerization of the Human Immunodeficiency Virus, Type 2 RNA Genome* , 2001, The Journal of Biological Chemistry.

[12]  B. Berkhout,et al.  Initiation of HIV-1 Reverse Transcription Is Regulated by a Primer Activation Signal* , 2001, The Journal of Biological Chemistry.

[13]  Christian Zwieb,et al.  Semi-automated update and cleanup of structural RNA alignment databases , 2001, Bioinform..

[14]  H. Huthoff,et al.  Mutations in the TAR hairpin affect the equilibrium between alternative conformations of the HIV-1 leader RNA. , 2001, Nucleic acids research.

[15]  C. Ehresmann,et al.  Identification of the in Vitro HIV-2/SIV RNA Dimerization Site Reveals Striking Differences with HIV-1* , 2001, The Journal of Biological Chemistry.

[16]  H. Huthoff,et al.  Two alternating structures of the HIV-1 leader RNA. , 2001, RNA.

[17]  M. Wainberg,et al.  Impact of Human Immunodeficiency Virus Type 1 RNA Dimerization on Viral Infectivity and of Stem-Loop B on RNA Dimerization and Reverse Transcription and Dissociation of Dimerization from Packaging , 2000, Journal of Virology.

[18]  B. Berkhout,et al.  The leader of the HIV-1 RNA genome forms a compactly folded tertiary structure. , 2000, RNA.

[19]  B. Berkhout,et al.  Multiple biological roles associated with the repeat (R) region of the HIV-1 RNA genome. , 2000, Advances in pharmacology.

[20]  Bjarne Knudsen,et al.  RNA secondary structure prediction using stochastic context-free grammars and evolutionary history , 1999, Bioinform..

[21]  E. Westhof,et al.  Structural basis for the specificity of the initiation of HIV‐1 reverse transcription , 1999, The EMBO journal.

[22]  P. Perlman,et al.  Photocrosslinking of 4-thio uracil-containing RNAs supports a side-by-side arrangement of domains 5 and 6 of a group II intron. , 1999, RNA.

[23]  M. Wainberg,et al.  Variant effects of non-native kissing-loop hairpin palindromes on HIV replication and HIV RNA dimerization: role of stem-loop B in HIV replication and HIV RNA dimerization. , 1999, Biochemistry.

[24]  J. Puglisi,et al.  HIV-1 A-rich RNA loop mimics the tRNA anticodon structure , 1998, Nature Structural Biology.

[25]  J. Kjems,et al.  Mapping the RNA binding sites for human immunodeficiency virus type-1 gag and NC proteins within the complete HIV-1 and -2 untranslated leader regions. , 1998, Nucleic acids research.

[26]  James L. Buescher,et al.  Preferential Completion of Human Immunodeficiency Virus Type 1 Proviruses Initiated with tRNA3Lys rather than tRNA1,2Lys , 1998, Journal of Virology.

[27]  C. Ehresmann,et al.  Mutational analysis of the tRNA3Lys/HIV-1 RNA (primer/template) complex. , 1998, Nucleic acids research.

[28]  A. Byström,et al.  Interactions between Ty1 Retrotransposon RNA and the T and D Regions of the tRNAiMet Primer Are Required for Initiation of Reverse Transcription In Vivo , 1998, Molecular and Cellular Biology.

[29]  Rupert De Wachter,et al.  RnaViz, a program for the visualisation of RNA secondary structure , 1997 .

[30]  B. Berkhout The primer binding site on the RNA genome of human and simian immunodeficiency viruses is flanked by an upstream hairpin structure. , 1997, Nucleic acids research.

[31]  M. Martin,et al.  Incorporation of Pr160(gag-pol) into virus particles requires the presence of both the major homology region and adjacent C-terminal capsid sequences within the Gag-Pol polyprotein , 1997, Journal of virology.

[32]  A. Das,et al.  Forced evolution of a regulatory RNA helix in the HIV-1 genome. , 1997, Nucleic acids research.

[33]  B. Berkhout,et al.  Role of the DIS hairpin in replication of human immunodeficiency virus type 1 , 1996, Journal of virology.

[34]  M. Wainberg,et al.  Initiation of (-) strand DNA synthesis from tRNA(3Lys) on lentiviral RNAs: implications of specific HIV-1 RNA-tRNA(3Lys) interactions inhibiting primer utilization by retroviral reverse transcriptases. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[35]  M. Wainberg,et al.  Human immunodeficiency virus Type 1 nucleocapsid protein (NCp7) directs specific initiation of minus-strand DNA synthesis primed by human tRNA(Lys3) in vitro: studies of viral RNA molecules mutated in regions that flank the primer binding site , 1996, Journal of virology.

[36]  É. Cohen,et al.  The human immunodeficiency virus type 1 5' packaging signal structure affects translation but does not function as an internal ribosome entry site structure , 1996, Journal of virology.

[37]  C. Ehresmann,et al.  Specific initiation and switch to elongation of human immunodeficiency virus type 1 reverse transcription require the post‐transcriptional modifications of primer tRNA3Lys. , 1996, The EMBO journal.

[38]  B. Berkhout Structure and function of the human immunodeficiency virus leader RNA. , 1996, Progress in nucleic acid research and molecular biology.

[39]  C. Sassetti,et al.  RNA secondary structure and binding sites for gag gene products in the 5' packaging signal of human immunodeficiency virus type 1 , 1995, Journal of virology.

[40]  C. Ehresmann,et al.  Initiation of Reverse Transcripion of HIV-1: Secondary Structure of the HIV-1 RNA/tRNA|rlmbopopnbop|Lys|clobop|3 (Template/Primer) Complex , 1995 .

[41]  B. Berkhout,et al.  A conserved hairpin structure predicted for the poly(A) signal of human and simian immunodeficiency viruses. , 1995, Virology.

[42]  A. Engelman,et al.  An integration-defective U5 deletion mutant of human immunodeficiency virus type 1 reverts by eliminating additional long terminal repeat sequences , 1994, Journal of virology.

[43]  C. Ehresmann,et al.  Modified nucleotides of tRNA(3Lys) modulate primer/template loop-loop interaction in the initiation complex of HIV-1 reverse transcription. , 1993, The Journal of biological chemistry.

[44]  A. Lever,et al.  Packaging of human immunodeficiency virus type 1 RNA requires cis-acting sequences outside the 5' leader region , 1993, Journal of virology.

[45]  A. Gronenborn,et al.  Identification of a binding site for the human immunodeficiency virus type 1 nucleocapsid protein. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[46]  A. Panganiban,et al.  Simian immunodeficiency virus RNA is efficiently encapsidated by human immunodeficiency virus type 1 particles , 1993, Journal of virology.

[47]  C. Ehresmann,et al.  Functional sites in the 5' region of human immunodeficiency virus type 1 RNA form defined structural domains. , 1993, Journal of molecular biology.

[48]  A. Lever,et al.  The human immunodeficiency virus type 1 packaging signal and major splice donor region have a conserved stable secondary structure , 1992, Journal of virology.

[49]  Y. Iwakura,et al.  RNA packaging signal of human immunodeficiency virus type 1. , 1992, Virology.

[50]  D. Capon,et al.  Regulation of mRNA accumulation by a human immunodeficiency virus trans-activator protein , 1987, Cell.