Random recurrent networks near criticality capture the broadband power distribution of human ECoG dynamics

The power spectrum of brain electric field potential recordings is dominated by an arrhythmic broadband signal but a mechanistic account of its underlying neural network dynamics is lacking. Here we show how the broadband power spectrum of field potential recordings can be explained by a simple random network of nodes near criticality. Such a recurrent network produces activity with a combination of a fast and a slow autocorrelation time constant, with the fast mode corresponding to local dynamics and the slow mode resulting from recurrent excitatory connections across the network. These modes are combined to produce a power spectrum similar to that observed in human intracranial EEG (i.e., electrocorticography, ECoG) recordings. Moreover, such a network naturally converts input correlations across nodes into temporal autocorrelation of the network activity. Consequently, increased independence between nodes results in a reduction in low-frequency power, which offers a possible explanation for observed changes in ECoG power spectra during task performance. Lastly, changes in network coupling produce changes in network activity power spectra reminiscent of those seen in human ECoG recordings across different arousal states. This model thus links macroscopic features of the empirical ECoG power spectrum to a parsimonious underlying network structure and proposes potential mechanisms for changes in ECoG power spectra observed across behavioral and arousal states. This provides a computational framework within which to generate and test hypotheses about the cellular and network mechanisms underlying whole brain electrical dynamics, their variations across behavioral states as well as abnormalities associated with brain diseases.

[1]  Jochen Triesch,et al.  Spike avalanches in vivo suggest a driven, slightly subcritical brain state , 2014, Front. Syst. Neurosci..

[2]  D. Chialvo Emergent complex neural dynamics , 2010, 1010.2530.

[3]  Stefan Mihalas,et al.  Self-organized criticality occurs in non-conservative neuronal networks during Up states , 2010, Nature physics.

[4]  Sen Song,et al.  Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits , 2005, PLoS biology.

[5]  P. J. Sjöström,et al.  Functional specificity of local synaptic connections in neocortical networks , 2011, Nature.

[6]  D. Plenz,et al.  The organizing principles of neuronal avalanches: cell assemblies in the cortex? , 2007, Trends in Neurosciences.

[7]  H. Stanley,et al.  Scaling, Universality, and Renormalization: Three Pillars of Modern Critical Phenomena , 1999 .

[8]  J. Sethna Statistical Mechanics: Entropy, Order Parameters, and Complexity , 2021 .

[9]  C. Bédard,et al.  Macroscopic models of local field potentials and the apparent 1/f noise in brain activity. , 2008, Biophysical journal.

[10]  G. Buzsáki,et al.  Mechanisms of gamma oscillations. , 2012, Annual review of neuroscience.

[11]  P. Abry,et al.  Scale-Free and Multifractal Time Dynamics of fMRI Signals during Rest and Task , 2012, Front. Physio..

[12]  D. Heeger,et al.  Slow Cortical Dynamics and the Accumulation of Information over Long Timescales , 2012, Neuron.

[13]  W. Freeman,et al.  Simulated power spectral density (PSD) of background electrocorticogram (ECoG) , 2008, Cognitive Neurodynamics.

[14]  Scott Makeig,et al.  High-frequency Broadband Modulations of Electroencephalographic Spectra , 2009, Front. Hum. Neurosci..

[15]  James P. Crutchfield,et al.  Revisiting the Edge of Chaos: Evolving Cellular Automata to Perform Computations , 1993, Complex Syst..

[16]  Henry Kennedy,et al.  A Predictive Network Model of Cerebral Cortical Connectivity Based on a Distance Rule , 2013, Neuron.

[17]  Dieter Jaeger,et al.  Infraslow LFP correlates to resting-state fMRI BOLD signals , 2013, NeuroImage.

[18]  Biyu J. He,et al.  The Temporal Structures and Functional Significance of Scale-free Brain Activity , 2010, Neuron.

[19]  B. Rockstroh,et al.  Slow potentials of the cerebral cortex and behavior. , 1990, Physiological reviews.

[20]  Bard Ermentrout,et al.  Linearization of F-I Curves by Adaptation , 1998, Neural Computation.

[21]  Mark S. Goldman,et al.  Memory without Feedback in a Neural Network , 2009, Neuron.

[22]  John M. Beggs,et al.  Being Critical of Criticality in the Brain , 2012, Front. Physio..

[23]  U. Knoblich,et al.  Optogenetic drive of neocortical pyramidal neurons generates fMRI signals that are correlated with spiking activity , 2013, Brain Research.

[24]  Xiao-Jing Wang,et al.  A diversity of localized timescales in network activity , 2014, eLife.

[25]  Simon Farrell,et al.  Estimation and interpretation of 1/falpha noise in human cognition. , 2004, Psychonomic bulletin & review.

[26]  A. Litwin-Kumar,et al.  Slow dynamics and high variability in balanced cortical networks with clustered connections , 2012, Nature Neuroscience.

[27]  D. Turcotte,et al.  Self-organized criticality , 1999 .

[28]  E. Callaway,et al.  Excitatory cortical neurons form fine-scale functional networks , 2005, Nature.

[29]  David J. Freedman,et al.  A hierarchy of intrinsic timescales across primate cortex , 2014, Nature Neuroscience.

[30]  A. Bunting ELECTRICAL NOISE IN THE , 2014 .

[31]  Andreas Klaus,et al.  Irregular spiking of pyramidal neurons organizes as scale-invariant neuronal avalanches in the awake state , 2015, eLife.

[32]  K. Miller,et al.  One-Dimensional Dynamics of Attention and Decision Making in LIP , 2008, Neuron.

[33]  J. Maunsell,et al.  Different Origins of Gamma Rhythm and High-Gamma Activity in Macaque Visual Cortex , 2011, PLoS biology.

[34]  W. Bialek,et al.  Are Biological Systems Poised at Criticality? , 2010, 1012.2242.

[35]  Thomas K. Berger,et al.  A synaptic organizing principle for cortical neuronal groups , 2011, Proceedings of the National Academy of Sciences.

[36]  E. Fetz,et al.  Decoupling the Cortical Power Spectrum Reveals Real-Time Representation of Individual Finger Movements in Humans , 2009, The Journal of Neuroscience.

[37]  Woodrow L. Shew,et al.  The Functional Benefits of Criticality in the Cortex , 2013, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[38]  Philippe Séguéla,et al.  Metabotropic induction of persistent activity in layers II/III of anterior cingulate cortex. , 2010, Cerebral cortex.

[39]  Stefano Panzeri,et al.  Modelling and analysis of local field potentials for studying the function of cortical circuits , 2013, Nature Reviews Neuroscience.

[40]  Gaute T. Einevoll,et al.  Intrinsic dendritic filtering gives low-pass power spectra of local field potentials , 2010, Journal of Computational Neuroscience.

[41]  Michael Grüninger,et al.  Introduction , 2002, CACM.

[42]  Xiao-Jing Wang Neurophysiological and computational principles of cortical rhythms in cognition. , 2010, Physiological reviews.

[43]  Olaf Sporns,et al.  Neurobiologically Realistic Determinants of Self-Organized Criticality in Networks of Spiking Neurons , 2011, PLoS Comput. Biol..

[44]  G. Buzsáki,et al.  NeuroGrid: recording action potentials from the surface of the brain , 2014, Nature Neuroscience.

[45]  S. Swain Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences , 1984 .

[46]  Vernon B Mountcastle,et al.  Introduction. Computation in cortical columns. , 2003, Cerebral cortex.

[47]  B. Rockstroh Slow cortical potentials and behavior , 1989 .

[48]  Frances S. Chance,et al.  Gain Modulation from Background Synaptic Input , 2002, Neuron.

[49]  Tang,et al.  Self-Organized Criticality: An Explanation of 1/f Noise , 2011 .

[50]  R. Ratcliff,et al.  Estimation and interpretation of 1/fα noise in human cognition , 2004 .

[51]  Biyu J. He Scale-Free Properties of the Functional Magnetic Resonance Imaging Signal during Rest and Task , 2011, The Journal of Neuroscience.

[52]  A R McIntosh,et al.  The development of a noisy brain. , 2010, Archives italiennes de biologie.

[53]  C S Rebert,et al.  Slow potential correlates of neuronal population responses in the cat's lateral geniculate nucleus. , 1973, Electroencephalography and clinical neurophysiology.

[54]  Michael W. Reimann,et al.  A Biophysically Detailed Model of Neocortical Local Field Potentials Predicts the Critical Role of Active Membrane Currents , 2013, Neuron.

[55]  K. Miller,et al.  Balanced Amplification: A New Mechanism of Selective Amplification of Neural Activity Patterns , 2016, Neuron.

[56]  C. Koch,et al.  Neuronal Shot Noise and Brownian 1/f2 Behavior in the Local Field Potential , 2008, PloS one.

[57]  H. Kennedy,et al.  A Large-Scale Circuit Mechanism for Hierarchical Dynamical Processing in the Primate Cortex , 2015, Neuron.

[58]  J. Maunsell,et al.  Attention improves performance primarily by reducing interneuronal correlations , 2009, Nature Neuroscience.

[59]  Jude F. Mitchell,et al.  Spatial Attention Decorrelates Intrinsic Activity Fluctuations in Macaque Area V4 , 2009, Neuron.

[60]  E. Halgren,et al.  Single-neuron dynamics in human focal epilepsy , 2011, Nature Neuroscience.

[61]  Robert M. Gray,et al.  Toeplitz and Circulant Matrices: A Review , 2005, Found. Trends Commun. Inf. Theory.

[62]  R. VanRullen,et al.  An oscillatory mechanism for prioritizing salient unattended stimuli , 2012, Trends in Cognitive Sciences.

[63]  G. Buzsáki Rhythms of the brain , 2006 .

[64]  N. Logothetis,et al.  In Vivo Measurement of Cortical Impedance Spectrum in Monkeys: Implications for Signal Propagation , 2007, Neuron.

[65]  Johannes J. Letzkus,et al.  A disinhibitory microcircuit for associative fear learning in the auditory cortex , 2011, Nature.

[66]  W. Wildman,et al.  Theoretical Neuroscience , 2014 .

[67]  L. Trefethen,et al.  Spectra and Pseudospectra , 2020 .

[68]  J. A. Roberts,et al.  The heavy tail of the human brain , 2015, Current Opinion in Neurobiology.

[69]  X. Wang,et al.  Synaptic Basis of Cortical Persistent Activity: the Importance of NMDA Receptors to Working Memory , 1999, The Journal of Neuroscience.

[70]  R. Lesser,et al.  Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band. , 1998, Brain : a journal of neurology.

[71]  X J Wang,et al.  Calcium coding and adaptive temporal computation in cortical pyramidal neurons. , 1998, Journal of neurophysiology.

[72]  Kristofer E. Bouchard,et al.  Functional Organization of Human Sensorimotor Cortex for Speech Articulation , 2013, Nature.

[73]  Xiao-Jing Wang,et al.  A Tradeoff Between Accuracy and Flexibility in a Working Memory Circuit Endowed with Slow Feedback Mechanisms. , 2015, Cerebral cortex.

[74]  M. Schölvinck,et al.  Neural basis of global resting-state fMRI activity , 2010, Proceedings of the National Academy of Sciences.

[75]  Nikola T. Markov,et al.  A Weighted and Directed Interareal Connectivity Matrix for Macaque Cerebral Cortex , 2012, Cerebral cortex.

[76]  Jeremy R. Manning,et al.  Spontaneously Reactivated Patterns in Frontal and Temporal Lobe Predict Semantic Clustering during Memory Search , 2012, The Journal of Neuroscience.

[77]  John M. Beggs,et al.  Neuronal Avalanches in Neocortical Circuits , 2003, The Journal of Neuroscience.

[78]  A. von Stein,et al.  Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[79]  G. Tononi,et al.  Breakdown of Cortical Effective Connectivity During Sleep , 2005, Science.

[80]  Jon A. Mukand,et al.  Neuronal ensemble control of prosthetic devices by a human with tetraplegia , 2006, Nature.

[81]  N. Logothetis,et al.  Frequency-Band Coupling in Surface EEG Reflects Spiking Activity in Monkey Visual Cortex , 2009, Neuron.

[82]  J. Poulet,et al.  Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice , 2008, Nature.

[83]  D. Drubach A specialized NMDA receptor function in layer 5 recurrent microcircuitry of the adult rat prefrontal cortex , 2009 .

[84]  Biyu J. He Scale-free brain activity: past, present, and future , 2014, Trends in Cognitive Sciences.

[85]  Claude Bédard,et al.  Comparative power spectral analysis of simultaneous elecroencephalographic and magnetoencephalographic recordings in humans suggests non-resistive extracellular media , 2010, Journal of Computational Neuroscience.

[86]  A. Destexhe,et al.  The high-conductance state of neocortical neurons in vivo , 2003, Nature Reviews Neuroscience.

[87]  G. Deco,et al.  Ongoing Cortical Activity at Rest: Criticality, Multistability, and Ghost Attractors , 2012, The Journal of Neuroscience.

[88]  J. M. Herrmann,et al.  Dynamical synapses causing self-organized criticality in neural networks , 2007, 0712.1003.

[89]  Xiao-Jing Wang,et al.  Cannabinoid-mediated disinhibition and working memory: dynamical interplay of multiple feedback mechanisms in a continuous attractor model of prefrontal cortex. , 2007, Cerebral cortex.

[90]  Milotti Linear processes that produce 1/f or flicker noise. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[91]  M. Magnasco,et al.  Self-tuned critical anti-Hebbian networks. , 2009, Physical review letters.

[92]  Woodrow L. Shew,et al.  Cascades and Cognitive State: Focused Attention Incurs Subcritical Dynamics , 2015, The Journal of Neuroscience.

[93]  Juan R. Vidal,et al.  Transient Suppression of Broadband Gamma Power in the Default-Mode Network Is Correlated with Task Complexity and Subject Performance , 2011, The Journal of Neuroscience.

[94]  C. Bédard,et al.  Does the 1/f frequency scaling of brain signals reflect self-organized critical states? , 2006, Physical review letters.

[95]  Klas H. Pettersen,et al.  Modeling the Spatial Reach of the LFP , 2011, Neuron.

[96]  Christopher G. Langton,et al.  Computation at the edge of chaos: Phase transitions and emergent computation , 1990 .

[97]  J. Fermaglich Electric Fields of the Brain: The Neurophysics of EEG , 1982 .

[98]  D. Contreras,et al.  Spatiotemporal Analysis of Local Field Potentials and Unit Discharges in Cat Cerebral Cortex during Natural Wake and Sleep States , 1999, The Journal of Neuroscience.

[99]  C. Koch,et al.  A brief history of time (constants). , 1996, Cerebral cortex.

[100]  Constructing 1/omegaalpha noise from reversible Markov chains. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[101]  Biyu J. He Spontaneous and Task-Evoked Brain Activity Negatively Interact , 2013, The Journal of Neuroscience.

[102]  T. Tao Outliers in the spectrum of iid matrices with bounded rank perturbations , 2010 .

[103]  Jeffrey G. Ojemann,et al.  Power-Law Scaling in the Brain Surface Electric Potential , 2009, PLoS Comput. Biol..

[104]  L. Abbott,et al.  Eigenvalue spectra of random matrices for neural networks. , 2006, Physical review letters.

[105]  C. Koch,et al.  The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes , 2012, Nature Reviews Neuroscience.

[106]  Jeremy R. Manning,et al.  Broadband Shifts in Local Field Potential Power Spectra Are Correlated with Single-Neuron Spiking in Humans , 2009, The Journal of Neuroscience.

[107]  O. Kinouchi,et al.  Optimal dynamical range of excitable networks at criticality , 2006, q-bio/0601037.

[108]  K. Linkenkaer-Hansen,et al.  Neuronal long-range temporal correlations and avalanche dynamics are correlated with behavioral scaling laws , 2013, Proceedings of the National Academy of Sciences.

[109]  N. Logothetis,et al.  Very slow activity fluctuations in monkey visual cortex: implications for functional brain imaging. , 2003, Cerebral cortex.

[110]  Nicolas Brunel,et al.  Encoding of Naturalistic Stimuli by Local Field Potential Spectra in Networks of Excitatory and Inhibitory Neurons , 2008, PLoS Comput. Biol..

[111]  P. Fries Neuronal gamma-band synchronization as a fundamental process in cortical computation. , 2009, Annual review of neuroscience.

[112]  Ned T. Sahin,et al.  Dynamic circuit motifs underlying rhythmic gain control, gating and integration , 2014, Nature Neuroscience.

[113]  Biyu J. He,et al.  Electrophysiological correlates of the brain's intrinsic large-scale functional architecture , 2008, Proceedings of the National Academy of Sciences.

[114]  L. Abbott,et al.  Neural network dynamics. , 2005, Annual review of neuroscience.

[115]  J. C. Anderson,et al.  Estimates of the net excitatory currents evoked by visual stimulation of identified neurons in cat visual cortex. , 1998, Cerebral cortex.

[116]  Anders Lansner,et al.  Computing the Local Field Potential (LFP) from Integrate-and-Fire Network Models , 2015, PLoS Comput. Biol..

[117]  Biyu J. He,et al.  The fMRI signal, slow cortical potential and consciousness , 2009, Trends in Cognitive Sciences.

[118]  Oren Shriki,et al.  Rate Models for Conductance-Based Cortical Neuronal Networks , 2003, Neural Computation.

[119]  M. A. Muñoz,et al.  Griffiths phases and the stretching of criticality in brain networks , 2013, Nature Communications.